
C. Varela 1

Logic Programming
Prolog: Arithmetic, Equalities, Operators, I/O. (PLP 11)

Databases: assert, retract. (CTM 9.6)

Carlos Varela
Rensselaer Polytechnic Institute

November 22, 2019

C. Varela 2

Arithmetic Goals

 N>M
 N<M
 N=<M
 N>=M

•  N and M must be bound to numbers for these tests to succeed or fail.

•  X is 1+2 is used to assign numeric value of right-hand-side to
variable in left-hand-side.

C. Varela 3

Loop Revisited

natural(1).
natural(N) :- natural(M), N is M+1.

my_loop(N) :- N>0,
 natural(I), % generate
 write(I), nl,
 I=N, % test
 !.

my_loop(_).

 Also called generate-and-test.

C. Varela 4

= is not equal to == or =:=

 X=Y X\=Y
 test whether X and Y can be or cannot be unified.

 X==Y X\==Y
 test whether X and Y are currently co-bound, i.e.,

 have been bound to, or share the same value.

 X=:=Y X=\=Y
 test arithmetic equality and inequality.
 Can take expressions and evaluates them to a numeric

 value before testing. Do not bind variables.

C. Varela 5

More equalities

 X=@=Y X\=@=Y
 test whether X and Y are structurally identical.

•  =@= is weaker than == but stronger than =.

•  Examples:
 a=@=A false
 A=@=B true
 x(A,A)=@=x(B,C) false
 x(A,A)=@=x(B,B) true
 x(A,B)=@=x(C,D) true

C. Varela 6

More on equalities
 X==Y
 ⇒ X=@=Y
 ⇒ X=Y

 but not the other way (⇐).

•  If two terms are currently co-bound, they are structurally identical, and
therefore they can unify.

•  Examples:
 a=@=A false
 A=@=B true
 x(A,A)=@=x(B,C) false
 x(A,A)=@=x(B,B) true
 x(A,B)=@=x(C,D) true

C. Varela 7

Prolog Operators
 :- op(P,T,O)
 declares an operator symbol O with precedence P and type T.

•  Example:
 :- op(500,xfx,’has_color’)
 a has_color red.
 b has_color blue.

 then:
 ?- b has_color C.
 C = blue.
 ?- What has_color red.
 What = a.

C. Varela 8

Operator precedence/type
•  Precendence P is an integer: the larger the number, the

less the precedence (ability to group).
•  Type T is one of:

T Position Associativity Examples
xfx Infix Non-associative is
xfy Infix Right-associative , ;
yfx Infix Left-associative + - * /
fx Prefix Non-associative ?-
fy Prefix Right-associative
xf Postfix Non-associative
yf Postfix Left-associative

C. Varela 9

Testing types

 atom(X)
 tests whether X is an atom, e.g., ‘foo’, bar.

 integer(X)
 tests whether X is an integer; it does not test for complex

 terms, e.g., integer(4/2) fails.

 float(X)
 tests whether X is a float; it matches exact type.

 string(X)
 tests whether X is a string, enclosed in `` … ``.

C. Varela 10

Prolog Input

 seeing(X)
 succeeds if X is (or can be) bound to current read port.
 X = user is keyboard (standard input.)
 see(X)
 opens port for input file bound to X, and makes it current.
 seen
 closes current port for input file, and makes user current.
 read(X)
 reads Prolog type expression from current port, storing value

 in X.
 end-of-file
 is returned by read at <end-of-file>.

C. Varela 11

Prolog Output
 telling(X)
 succeeds if X is (or can be) bound to current output port.
 X = user is screen (standard output.)
 tell(X)
 opens port for output file bound to X, and makes it current.
 told
 closes current output port, and reverses to screen output

 (makes user current.)
 write(X)
 writes Prolog expression bound to X into current output port.
 nl
 new line (line feed).
 tab(N)
 writes N spaces to current output port.

C. Varela 12

I/O Example

browse(File) :-
 seeing(Old), /* save for later */
 see(File), /* open this file */
 repeat,
 read(Data), /* read from File */
 process(Data),
 seen, /* close File */
 see(Old), /* prev read source */
 !. /* stop now */

process(end_of_file) :- !.
process(Data) :- write(Data), nl, fail.

C. Varela 13

First-Class Terms Revisited

call(P) Invoke predicate as a goal.

assert(P) Adds predicate to database.

retract(P) Removes predicate from database.

functor(T,F,A)
Succeeds if T is a term with functor F
and arity A.

findall(F,P,L)

 Returns a list L with all elements F
 satisfying predicate P

clause(H,B)
Succeeds if the clause H :- B can be
found in the database.

Databases: assert and retract
•  Prolog enables direct modification of its knowledge base

using assert and retract.
•  Let us consider a tic-tac-toe game:

•  We can represent a board with facts x(n) and o(n), for n in
{1..9} corresponding to each player’s moves.

•  As a player (or the computer) moves, a fact is dynamically
added to Prolog’s knowledge base.

C. Varela 14

1 2 3

4 5 6

7 8 9

Databases: assert and retract

C. Varela 15

% main goal:
play :- clear, repeat, getmove, respond.

getmove :- repeat,

 write('Please enter a move: '),
 read(X), empty(X),
 assert(o(X)).

respond :- makemove, printboard, done.

makemove :- move(X), !, assert(x(X)).
makemove :- all_full.

clear :- retractall(x(_)), retractall(o(_)).

Human move

Computer move

Tic-tac-toe: Strategy

C. Varela 16

move(A) :- good(A), empty(A), !.

good(A) :- win(A).
good(A) :- block_win(A).
good(A) :- split(A).
good(A) :- strong_build(A).
good(A) :- weak_build(A).

good(5).
good(1). good(3). good(7). good(9).
good(2). good(4). good(6). good(8).

The strategy is to first try to win, then try to block a win, then try to create a
split (forced win in the next move), then try to prevent opponent from building
three in a row, and creating a split, finally choose center, corners, and other
empty squares. The order of the rules is key to implementing the strategy.

Tic-tac-toe: Strategy(2)

C. Varela 17

win(A) :- x(B), x(C), line(A,B,C).
block_win(A):- o(B), o(C), line(A,B,C).
split(A) :- x(B), x(C), different(B,C),
 line(A,B,D), line(A,C,E), empty(D), empty(E).
strong_build(A) :- x(B), line(A,B,C), empty(C),

 not(risky(C)).
weak_build(A) :- x(B), line(A,B,C), empty(C),

 not(double_risky(C)).

risky(C) :- o(D), line(C,D,E), empty(E).
double_risky(C) :- o(D), o(E), different(D,E),
 line(C,D,F), line(C,E,G), empty(F), empty(G).

•  Moving x(8) produces a split: x(2) or x(7)
wins in next move.

O

X O

X

Databases in Oz: RelationClass
•  Oz supports dynamic database modifications using a

RelationClass. The initial relation is defined as follows:
 Rel = {New RelationClass init}

•  Once we have a relation instance, the following operations
are possible:
–  {Rel assert(T)} adds tuple T to Rel.
–  {Rel assertall(Ts)} adds the list of tuples Ts to Rel.
–  {Rel query(X)} binds X to one of the tuples in Rel. X can be any

partial value. If more than one tuple is compatible with X, then
search can enumerate all of them.

C. Varela 18

Databases in Oz: An example

GraphRel = {New RelationClass init}
{GraphRel assertall([edge(a b) edge(b c) edge(c d)

 edge(d e) edge(b e) edge(d f)])}
proc {EdgeP A B} {GraphRel query(edge(A B))} end
{Browse {Search.base.all proc {$ X} {EdgeP b X} end}}
% displays all edges from node b: [c e]

C. Varela 19

a b c d e f

Databases in Oz: An example(2)
proc {Path X Y}
 choice
 X = Y
 [] Z in
 {EdgeP Z Y}
 {Path X Z}
 end
end
{Browse {Search.base.all proc {$ X} {Path b X} end}}
% displays all nodes with a path from node b: [b c e e f d]

C. Varela 20

C. Varela 21

Exercises

87. The Prolog predicate my_loop/1 can succeed or fail as a
goal. Explain why you may want a predicate to succeed,
or fail depending on its expected calling context.

88. CTM Exercise 9.8.1 (page 671). Do it both in Prolog and
Oz.

89. PLP Exercise 11.7 (page 571), in Oz.
90. Develop a tic-tac-toe game in Oz.

