
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Higher-Order Programming:
Iterative computation (CTM Section 3.2)

Closures, procedural abstraction, genericity, instantiation,
embedding (CTM Section 3.6.1)

Carlos Varela
RPI

September 17, 2019

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Iterative computation
•  An iterative computation is one whose execution stack is

bounded by a constant, independent of the length of the
computation

•  Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1→ → →...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

From a general scheme
to a control abstraction (1)

fun {Iterate Si}
 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}

 {Iterate Si+1}
 end

end
•  IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

From a general scheme
to a control abstraction (2)

fun {Iterate S IsDone Transform}
 if {IsDone S} then S

 else S1 in
 S1 = {Transform S}
 {Iterate S1 IsDone Transform}
 end

end

fun {Iterate Si}
 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}
 {Iterate Si+1}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Sqrt using the Iterate abstraction
fun {Sqrt X}
 fun {Improve Guess}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess}
 {Abs X - Guess*Guess}/X < 0.000001
 end
 Guess = 1.0
in
 {Iterate Guess GoodEnough Improve}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Sqrt using the control abstraction
fun {Sqrt X}

 {Iterate
 1.0
 fun {$ G} {Abs X - G*G}/X < 0.000001 end

 fun {$ G} (G + X/G)/2.0 end
 }

end

Iterate could become a linguistic abstraction

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Sqrt in Haskell
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
 where
 goodEnough guess = (abs (x – guess*guess))/x < 0.00001
 improve guess = (guess + x/guess)/2.0
 sqrtGuesses = 1:(map improve sqrtGuesses)

This sqrt example uses infinite lists enabled by lazy
evaluation, and the map control abstraction.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Higher-order programming
•  Higher-order programming = the set of programming

techniques that are possible with procedure values
(lexically-scoped closures)

•  Basic operations
–  Procedural abstraction: creating procedure values with lexical

scoping
–  Genericity: procedure values as arguments
–  Instantiation: procedure values as return values
–  Embedding: procedure values in data structures

•  Higher-order programming is the foundation of
component-based programming and object-oriented
programming

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Procedural abstraction

•  Procedural abstraction is the ability to convert any
statement into a procedure value
–  A procedure value is usually called a closure, or more precisely, a

lexically-scoped closure
–  A procedure value is a pair: it combines the procedure code with

the environment where the procedure was created (the contextual
environment)

•  Basic scheme:
–  Consider any statement <s>
–  Convert it into a procedure value: P = proc {$} <s> end
–  Executing {P} has exactly the same effect as executing <s>

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Procedural abstraction
fun {AndThen B1 B2}
 if B1 then B2 else false
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Procedural abstraction
fun {AndThen B1 B2}
 if {B1} then {B2} else false
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

A common limitation
•  Most popular imperative languages (C, Pascal) do not have procedure values
•  They have only half of the pair: variables can reference procedure code, but there is no

contextual environment
•  This means that control abstractions cannot be programmed in these languages

–  They provide a predefined set of control abstractions (for, while loops, if statement)
•  Generic operations are still possible

–  They can often get by with just the procedure code. The contextual environment is often
empty.

•  The limitation is due to the way memory is managed in these languages
–  Part of the store is put on the stack and deallocated when the stack is deallocated
–  This is supposed to make memory management simpler for the programmer on systems that

have no garbage collection
–  It means that contextual environments cannot be created, since they would be full of dangling

pointers

•  Object-oriented programming languages can use objects to encode procedure
values by making external references (contextual environment) instance
variables.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Genericity
•  Replace specific

entities (zero 0 and
addition +) by
function arguments

•  The same routine
can do the sum, the
product, the logical
or, etc.

fun {SumList L}
 case L
of nil then 0

 [] X|L2 then X+{SumList L2}
 end

end

fun {FoldR L F U}
 case L
of nil then U

 [] X|L2 then {F X {FoldR L2 F U}}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Instantiation

•  Instantiation is when a procedure returns a procedure value as its result
•  Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically

to SumList, which is an « instance » of a folding function

fun {FoldFactory F U}
 fun {FoldR L}
 case L

 of nil then U
 [] X|L2 then {F X {FoldR L2}}
 end
 end

in
 FoldR

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Embedding
•  Embedding is when procedure values are put in data

structures
•  Embedding has many uses:

–  Modules: a module is a record that groups together a set of related
operations

–  Software components: a software component is a generic function
that takes a set of modules as its arguments and returns a new
module. It can be seen as specifying a module in terms of the
modules it needs.

–  Delayed evaluation (also called explicit lazy evaluation): build just
a small part of a data structure, with functions at the extremities
that can be called to build more. The consumer can control
explicitly how much of the data structure is built.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Exercises
15. CTM Exercise 3.10.2 (page 230)
16. CTM Exercise 3.10.3 (page 230)
17. Develop a control abstraction for iterating over a list of

elements.
18. CTM Exercise 3.10.5 (page 230)
19. Suppose you have two sorted lists. Merging is a simple

method to obtain an again sorted list containing the
elements from both lists. Write a Merge function that is
generic with respect to the order relation.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Exercises
20.  Instantiate the FoldFactory to create a ProductList function

to multiply all the elements of a list.
21. Create an AddFactory function that takes a list of numbers

and returns a list of functions that can add by those
numbers, e.g. {AddFactory [1 2]} => [Inc1 Inc2] where Inc1
and Inc2 are functions to increment a number by 1 and 2
respectively, e.g., {Inc2 3} => 5.

22.  Implement exercises 18-21 in both Oz and Haskell.

