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Data types 
•  A datatype defines a set of values and an associated set of 

operations 
•  An abstract datatype is described by a set of operations 
•  These operations are the only thing that a user of the 

abstraction can assume 
•  Examples: 

–  Numbers, Records, Lists,…  (Oz basic data types) 
–  Stacks, Dictionaries,… (user-defined secure data types) 
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Types of typing 
•  Languages can be weakly typed 

–  Internal representation of types can be manipulated by a program 
•  e.g., a string in C is an array of characters ending in ‘\0’. 

•  Strongly typed programming languages can be further 
subdivided into: 
–  Dynamically typed languages 

•  Variables can be bound to entities of any type, so in general 
the type is only known at run-time, e.g., Oz, SALSA. 

–  Statically typed languages 
•  Variable types are known at compile-time, e.g., C++, Java. 
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Type Checking and Inference 

•  Type checking is the process of ensuring a program is well-
typed. 
–  One strategy often used is abstract interpretation:  

•  The principle of getting partial information about the answers 
from partial information about the inputs 

•  Programmer supplies types of variables and type-checker 
deduces types of other expressions for consistency 

•  Type inference frees programmers from annotating 
variable types: types are inferred from variable usage, e.g. 
ML, Haskell. 
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Example:  The identity function 
•  In a dynamically typed language, e.g., Oz, it is possible to write a 

generic function, such as the identity combinator: 
 

  fun {Id X} X end 
 
•  In a statically typed language, it is necessary to assign types to 

variables, e.g. in a statically typed variant of Oz you would write: 

  fun {Id X:integer}:integer X end 
  
 These types are checked at compile-time to ensure the function is only 
passed proper arguments.  {Id 5} is valid, while {Id Id} is not. 
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Example:  Improper Operations 
•  In a dynamically typed language, it is possible to write an improper 

operation, such as passing a non-list as a parameter, e.g. in Oz: 

  declare fun {ShiftRight L}  0|L end 
  {Browse {ShiftRight 4}}   % unintended missuse 
  {Browse {ShiftRight [4]}}  % proper use 

 
•  In a statically typed language, the same code would produce a type 

error, e.g. in a statically typed variant of Oz you would write: 

  declare fun {ShiftRight L:List}:List  0|L end 
  {Browse {ShiftRight 4}}   % compiler error!! 
  {Browse {ShiftRight [4]}}  % proper use 
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Example:  Type Inference 
•  In a statically typed language with type inference (e.g., ML), it is 

possible to write code without type annotations, e.g. using Oz syntax: 

  declare fun {Increment N}  N+1 end 
  {Browse {Increment [4]}}  % compiler error!! 
  {Browse {Increment 4}}   % proper use 

 
•  The type inference system knows the type of  ’+’  to be: 

  <number> X   <number>  à   <number> 
 
Therefore, Increment must always receive an argument of type 
<number> and it always returns a value of type <number>. 
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Static Typing Advantages 

•  Static typing restricts valid programs (i.e., reduces 
language’s expressiveness) in return for: 

–  Improving error-catching ability 
–  Efficiency 
–  Security 
–  Partial program verification 
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Dynamic Typing Advantages 

•  Dynamic typing allows all syntactically legal programs to 
execute, providing for: 

–  Faster prototyping (partial, incomplete programs can be tested) 
–  Separate compilation---independently written modules can more 

easily interact--- which enables open software development 
–  More expressiveness in language 
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Combining static and dynamic 
typing 

•  Programming language designers do not have to make an 
all-or-nothing decision on static vs dynamic typing. 
–  e.g, Java has a root Object class which enables polymorphism 

•  A variable declared to be an Object can hold an instance of any 
(non-primitive) class. 

•  To enable static type-checking, programmers need to annotate 
expressions using these variables with casting operations, i.e., they 
instruct the type checker to pretend the type of the variable is different 
(more specific) than declared. 

•  Run-time errors/exceptions can then occur if type conversion 
(casting) fails. 

•  Alice (Saarland U.) is a statically-typed variant of Oz. 
•  SALSA-Lite is a statically-typed variant of SALSA. 
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Oz data types 
Value 

Number 

Literal 

Record Procedure 

Int Float 

Atom Boolean 

true false 

Char 

Tuple 

List 

String 
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Oz data types (2) 
Value 

Number 

Literal 

Record Procedure 

Int Float 

Atom Boolean 

true false 

Char 

Tuple 

List 

String 
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Abstract data types 
•  A datatype is a set of values and an associated set of 

operations 
•  A datatype is abstract only if it is completely described by 

its set of operations regardless of its implementation 
•  This means that it is possible to change the implementation 

of the datatype without changing its use 
•  The datatype is thus described by a set of procedures 
•  These operations are the only thing that a user of the 

abstraction can assume 
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Example: A Stack 
•  Assume we want to define a new datatype 〈stack T〉 whose 

elements are of any type T 
fun {NewStack}: 〈Stack T〉 
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉  

•  These operations normally satisfy certain laws: 
{IsEmpty {NewStack}} = true 
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold 
{Pop {NewStack} E} raises error 
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Stack (implementation) 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of  X|S1 then E = X  S1 end end 
fun {IsEmpty S} S==nil end 
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Stack (another implementation) 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of  X|S1 then E = X  S1 end end 
fun {IsEmpty S} S==nil end 
 
fun {NewStack} emptyStack end 
fun {Push S E} stack(E S) end 
fun {Pop S E} case S of stack(X S1) then E = X S1 end end 
fun {IsEmpty S} S==emptyStack end 
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Stack data type in Haskell 
data Stack a  = Empty | Stack a (Stack a) 
 
newStack :: Stack a 
newStack = Empty 
push :: Stack a -> a -> Stack a  
push s e = Stack e s 
pop :: Stack a -> (Stack a,a) 
pop (Stack e s) = (s,e) 
isempty :: Stack a -> Bool 
isempty Empty = True 
isempty (Stack _ _) = False 
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Dictionaries 
•  The datatype dictionary is a finite mapping from a set T to 〈value〉, 

where T is either 〈atom〉 or 〈integer〉 
•  fun {NewDictionary} 

–  returns an empty mapping  
•  fun {Put D Key Value} 

–  returns a dictionary identical to D except Key is mapped to Value 
•  fun {CondGet D Key Default} 

–  returns the value corresponding to Key in D, otherwise returns 
Default 

•  fun {Domain D} 
–  returns a list of the keys in D 
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Implementation 
fun {Put Ds Key Value}  
   case Ds  
   of nil then [Key#Value]  
   [] (K#V)|Dr andthen Key==K then  
      (Key#Value) | Dr  
   [] (K#V)|Dr andthen K>Key then  
      (Key#Value)|(K#V)|Dr  
   [] (K#V)|Dr andthen K<Key then  
      (K#V)|{Put Dr Key Value}  
   end  
end  
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Implementation 
fun {CondGet Ds Key Default}  
   case Ds  
   of nil then Default  
   [] (K#V)|Dr andthen Key==K then  
      V  
   [] (K#V)|Dr andthen K>Key then  
      Default  
   [] (K#V)|Dr andthen K<Key then  
      {CondGet Dr Key Default}  
   end  
end  
fun {Domain Ds}  
   {Map Ds fun {$ K#_} K end}  
end 
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Further implementations 
•  Because of abstraction, we can replace the dictionary ADT 

implementation using a list, whose complexity is linear (i.e., 
O(n)), for a binary tree implementation with logarithmic 
operations (i.e., O(log(n)).  

•  Data abstraction makes clients of the ADT unaware (other 
than through perceived efficiency) of the internal 
implementation of the data type. 

•  It is important that clients do not use anything about the 
internal representation of the data type (e.g., using {Length 
Dictionary} to get the size of the dictionary).  Using only 
the interface (defined ADT operations) ensures that 
different implementations can be used in the future. 
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Secure abstract data types: 
Stack is not secure 

fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} 

 case S of X|S1 then E=X  S1 end 
end 
fun {IsEmpty S} S==nil end 
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Secure abstract data types II 
•  The representation of the stack is visible: 
 

 [a b c d] 
 
•  Anyone can use an incorrect representation, i.e., by passing 

other language entities to the stack operation, causing it to 
malfunction (like a|b|X or Y=a|b|Y) 

•  Anyone can write new operations on stacks, thus breaking 
the abstraction-representation barrier 

•  How can we guarantee that the representation is invisible? 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24 

Secure abstract data types III 

•  The model can be extended.  Here are two ways: 
–  By adding a new basic type, an unforgeable constant called a name 
–  By adding encapsulated state. 

•  A name is like an atom except that it cannot be typed in on 
a keyboard or printed! 
–  The only way to have a name is if one is given it explicitly 

•  There are just two operations on names: 
N={NewName} : returns a fresh name 
N1==N2 : returns true or false 
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Secure abstract datatypes IV 

proc {NewWrapper ?Wrap ?Unwrap}  
    Key={NewName}  
in  
    fun {Wrap X}  
            fun {$ K} if K==Key then X end end 
    end  
    fun {Unwrap C}  
            {C Key} 
   end  
end 

•  We want to « wrap » and « unwrap » values 
•  Let us use names to define a wrapper & unwrapper 
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Secure abstract data types: 
A secure stack 

With the wrapper & unwrapper we can build a secure stack 
 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} 
  case {Unwrap S} of X|S1 then E=X  {Wrap S1} end 
 end 
 fun {IsEmpty S} {Unwrap S}==nil end 

end 
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Capabilities and security 
•  We say a computation is secure if it has well-defined and controllable 

properties, independent of the existence of other (possibly malicious) 
entities (either computations or humans) in the system 

•  What properties must a language have to be secure? 
•  One way to make a language secure is to base it on capabilities 

–  A capability is an unforgeable language entity (« ticket ») that gives its 
owner the right to perform a particular action and only that action 

–  In our model, all values are capabilities (records, numbers, procedures, 
names) since they give the right to perform operations on the values 

–  Having a procedure gives the right to call that procedure.  Procedures are 
very general capabilities, since what they do depends on their argument 

–  Using names as procedure arguments allows very precise control of rights; 
for example, it allows us to build secure abstract data types 

•  Capabilities originated in operating systems research 
–  A capability can give a process the right to create a file in some directory 
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Secure abstract datatypes V 
•  We add two new concepts to the computation model 
•  {NewChunk Record} 

–  returns a value similar to record but its arity cannot be inspected 
–  recall {Arity foo(a:1 b:2)}  is [a b] 

•  {NewName} 
–  a function that returns a new symbolic (unforgeable, i.e. cannot be 

guessed) name 
–  foo(a:1 b:2 {NewName}:3) makes impossible to access the third 

component, if you do not know the arity 

•  {NewChunk foo(a:1 b:2 {NewName}:3) } 
–  Returns what ? 
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Secure abstract datatypes VI 
proc {NewWrapper ?Wrap ?Unwrap}  
   Key={NewName}  
in  
   fun {Wrap X}  
      {NewChunk foo(Key:X)}  
   end  
   fun {Unwrap C}  
      C.Key  
   end  
end 
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Secure abstract data types: 
Another secure stack 

With the new wrapper & unwrapper we can build another secure stack 
(since we only use the interface to wrap and unwrap, the code is 
identical to the one using higher-order programming) 

 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} 
  case {Unwrap S} of X|S1 then E=X  {Wrap S1} end 
 end 
 fun {IsEmpty S} {Unwrap S}==nil end 

end 
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Stack abstract data type as a 
module in Haskell 

 
module StackADT (Stack,newStack,push,pop,isEmpty) where 
 
data Stack a  = Empty | Stack a (Stack a) 
newStack = Empty 
… 

•  Modules can then be imported by other modules, e.g.: 
 
module Main (main) where 
import StackADT ( Stack, newStack,push,pop,isEmpty ) 
 
main = do print (push (push newStack 1) 2) 
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Declarative operations (1) 
•  An  operation is declarative if whenever it is called with 

the same arguments, it returns the same results 
independent of any other computation state 

•  A declarative operation is: 
–  Independent (depends only on its arguments, nothing else) 
–  Stateless (no internal state is remembered between calls) 
–  Deterministic (call with same operations always give same results) 

•  Declarative operations can be composed together to yield 
other declarative components  
–  All basic operations of the declarative model are declarative and 

combining them always gives declarative components 
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Declarative 
operation 

Arguments 

Results 

Declarative operations (2) 

rest of computation 
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Why declarative components (1) 

•  There are two reasons why they are important: 
•  (Programming in the large) A declarative component can be written,  

tested, and proved correct independent of other components and of its 
own past history. 

–  The complexity (reasoning complexity) of a program composed of 
declarative components is the sum of the complexity of the components 

–  In general the reasoning complexity of programs that are composed of 
nondeclarative components explodes because of the intimate interaction 
between components 

•  (Programming in the small) Programs written in the declarative model 
are much easier to reason about than programs written in more 
expressive models (e.g., an object-oriented model). 

–  Simple algebraic and logical reasoning techniques can be used 
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Why declarative components (2) 
•  Since declarative components are 

mathematical functions, algebraic 
reasoning is possible i.e. 
substituting equals for equals 

•  The declarative model of CTM 
Chapter 2 guarantees that all 
programs written are declarative 

•  Declarative components can be 
written in models that allow stateful 
data types, but there is no guarantee  

€ 

Given
f (a) = a2

We can replace f (a) in any other 
equation
b = 7 f (a)2  becomes b = 7a4
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Classification of 
declarative programming 

Declarative 
programming 

Descriptive 

Programmable 

Observational 

Definitional Declarative  
model 

Functional  
programming 

Deterministic 
logic programming 

•  The word declarative means many things to 
many people.  Let’s try to eliminate the 
confusion. 

•  The basic intuition is to program by defining 
the what without explaining the how   
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Oz kernel language 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 
 |  proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end    procedure introduction 
 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end      conditional 
 |  ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’       procedure application 
 |  case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 

 

The following defines the syntax of a statement, 〈s〉 denotes a statement  
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Why the Oz KL is declarative 

•  All basic operations are declarative 
•  Given the components (sub-statements) are declarative, 

–  sequential composition 
–  local statement 
–  procedure definition 
–  procedure call 
–  if statement 
–  case statement 

are all declarative (independent, stateless, deterministic). 
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Monads 
•  Purely functional programming is declarative in nature: 

whenever a function is called with the same arguments, it 
returns the same results independent of any other 
computation state. 

•  How to model the real world (that may have context 
dependences, state, nondeterminism) in a purely functional 
programming language? 
–  Context dependences: e.g., does file exist in expected directory? 
–  State: e.g., is there money in the bank account? 
–  Nondeterminism: e.g., does bank account deposit happen before or 

after interest accrual? 

•  Monads to the rescue! 
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Type Classes in Haskell 
•  Types in Haskell can be polymorphic, e.g. lists: 

–  A list of integers is denoted as being of type [Integer]. 
–  A list of characters is denoted as being of type [Char]. 
–  The polymorphic type [a] corresponds to lists of an arbitrary type a. 

•  Functions can be applicable to polymorphic types, e.g.: 
–  Finding an element in a list can take either lists of integers or lists 

of booleans, or lists of any type a: 
 
elem x []        = False 
elem x (y:ys) = (x == y) || elem x ys 
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Type Classes in Haskell 
 elem x []        = False 
 elem x (y:ys) = (x == y) || (elem x ys) 

•  The type of elem is a->[a]->Bool for any type a that supports 
equality checking (==). 

•  This is specified in Haskell with a type constraint: 
 elem :: (Eq a) => a->[a]->Bool 

•  All types that support the == operation are said to be 
instances of the type class Eq: 

 class Eq a where 
     (==)      ::  a -> a -> Bool 

   x /= y    = not (x == y)   -- default method 
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Stack data type is an instance of 
Eq type class 

 
 
instance Eq a => Eq (Stack a) where 
    Empty            == Empty            =  True 
    (Stack e1 s1) == (Stack e2 s2) =  (e1 == e2) && (s1 == s2) 
    _                    == _                    =  False 
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Higher order types 
•  You can think of the polymorphic Stack type as a type 

constructor that receives a type and produces a new type, 
e.g.: 
–  Stack Integer produces a stack of integers type. 

•  Consider the Functor higher-order type class: 
 class Functor f where 
   fmap    ::   (a->b) -> f a -> f b 

•  We can declare Stack (not Stack a) to be an instance of the 
Functor class: 

 instance Functor Stack where 
   fmap f Empty        = Empty 
   fmap f (Stack e s) = Stack (f e) (fmap f s) 

Notice that f a applies type 
(constructor) f to type a. 
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Functor class laws 
•  All instances of the Functor class should respect some 

laws: 
   fmap id                 = id 
   fmap (f . g)           = fmap f . fmap g 

•  Polymorphic types can be thought of as containers for 
values of another type. 

•  These laws ensure that the container shape (e.g., a list, a 
stack, or a tree) is unchanged by fmap and that the contents 
are not re-arranged by the mapping operation. 

•  Functor is a monadic class.  Other monadic classes are 
Monad, and MonadPlus. 
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Monad class 
•  The Monad class defines two basic operations: 

class Monad m where 
 (>>=)                ::   m a -> (a -> m b) -> m b   -- bind 
 return               ::   a -> m a 
 fail                    ::  String -> m a 
 m >> k             =   m >>= \_ -> k 

•  The >>= infix operation binds two monadic values, while 
the return operation injects a value into the monad 
(container). 

•  Example monadic classes are IO, lists ([]) and Maybe. 



C. Varela 46 

do syntactic sugar 
•  In the IO class, x >>= y, performs two actions sequentially 

(like the Seq combinator in the lambda-calculus) passing 
the result of the first into the second. 

•  Chains of monadic operations can use do: 
 do e1 ; e2  =   e1 >> e2 
 do p <- e1; e2  =   e1 >>= \p -> e2   

•  Pattern match can fail, so the full translation is: 
 do p <- e1; e2  =   e1 >>= (\v -> case of p -> e2 
                                      _ -> fail “s”) 

•  Failure in IO monad produces an error, whereas failure in 
the List monad produces the empty list. 
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Monad class laws 
•  All instances of the Monad class should respect the 

following laws: 
 return a >>= k   = k a 
 m >>= return   = m 
 xs >>= return . f   = fmap f xs 
 m >>= (\x -> k x >>= h)  = (m >>= k) >>= h 

•  These laws ensure that we can bind together monadic 
values with >>= and inject values into the monad 
(container) using return in consistent ways.  

•  The MonadPlus class includes an mzero element and an 
mplus operation.  For lists, mzero is the empty list ([]), and 
the mplus operation is list concatenation (++). 
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List comprehensions with monads 
lc1 = [(x,y) | x <- [1..10], y <- [1..x]] 
 
lc1' = do x <- [1..10] 
              y <- [1..x] 
              return (x,y) 
 
lc1'' = [1..10] >>=  (\x ->  
                              [1..x] >>= (\y -> 
                                               return (x,y))) 
 

List comprehensions are 
implemented using a built-in 
list monad.  Binding (l >>= f) 

applies the function f to all the 
elements of the list l and 

concatenates the results. The 
return function creates a 

singleton list. 
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List comprehensions with monads (2) 
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10] 
lc3' = do x <- [1..10] 
          y <- [1..x] 
          True <- return (x+y<=10) 
          return (x,y) 
 
lc3'' = [1..10] >>=  (\x ->  
             [1..x] >>= (\y -> 
                 return (x+y<=10) >>=  
                     (\b -> case b of True -> return (x,y); _ -> fail “”))) 
 
 
 

Guards in list 
comprehensions assume 
that fail in the List monad 

returns an empty list. 
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An instruction counter monad 
•  We will create an instruction counter using a monad R: 

 
data R a = R (Resource -> (a, Resource))  -- the monadic type 
 
instance Monad R where 
   -- (>>=) :: R a -> (a -> R b) -> R b 
   R c1 >>= fc2  = R (\r -> let (s,r') = c1 r 
                                              R c2 = fc2 s in 
                                          c2 r') 
   -- return :: a -> R a 
   return v      = R (\r -> (v,r)) 

A computation is modeled 
as a function that takes a 
resource r and returns a 

value of type a, and a new 
resource r’.  The resource 
is implicitly carried state. 
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An instruction counter monad (2) 
•  Counting steps: 

 type Resource = Integer  -- type synonym 
 step  :: a -> R a 
 step    v  = R (\r -> (v,r+1)) 
 count  :: R Integer -> (Integer, Resource) 
 count (R c) = c 0 

•  Lifting a computation to the monadic space: 
 incR  :: R Integer -> R Integer 
 incR n  = do nValue <- n 

                                step (nValue+1) 
 
count (incR (return 5))  -- displays (6,1) 
 

An inc computation 
(Integer -> Integer) is lifted 

to the monadic space:  
(R Integer -> R Integer). 
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An instruction counter monad (3) 
•  Generic lifting of operations to the R monad: 

 lift1 :: (a->b) -> R a -> R b 
 lift1 f n = do nValue <- n 

                           step (f nValue) 
 lift2 :: (a->b->c) -> R a -> R b -> R c 
 lift2 f n1 n2 = do n1Value <- n1 

                                  n2Value <- n2 
                                  step (f n1Value n2Value) 

 instance Num a => Num (R a) where 
    (+)          =  lift2 (+) 
    (-)           =  lift2 (-) 
    fromInteger  =  return . fromInteger 

With generic lifting 
operations, we can define 

incR = lift1 (+1) 
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An instruction counter monad (4) 
•  Lifting conditionals to the R monad: 

 ifR :: R Bool -> R a -> R a -> R a 
 ifR b t e = do bVal <- b 

                             if bVal then t 
                                        else e 
 

 (<=*) :: (Ord a) => R a -> R a -> R Bool 
 (<=*) = lift2 (<=) 

 
 fib :: R Integer -> R Integer 
 fib n = ifR (n <=* 1) n (fib (n-1) + fib (n-2)) 

 

We can now count the 
computation steps with: 
count (fib 10) => (55,1889) 
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Monads summary 
•  Monads enable keeping track of imperative features (state) 

in a way that is modular with purely functional 
components. 
–  For example, fib remains functional, yet the R monad enables us to 

keep a count of instructions separately. 

•  Input/output, list comprehensions, and optional values 
(Maybe class) are built-in monads in Haskell. 

•  Monads are useful to modularly define semantics of 
domain-specific languages. 
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Exercises 
31.  Compare polymorphic lists in Oz and Haskell.  What is the impact of 

the type system on expressiveness and error-catching ability?  Give 
an example. 

32.  Why is it important that the representation of an ADT be hidden from 
its users?  Name two mechanisms that can accomplish this 
representation hiding in Oz and Haskell. 

33.  Can type inference always deduce the type of an expression? If not, 
give a counter-example. 

34.  What is the difference between a type class and a type instance in 
Haskell.  Give an example. 

35.  Write quicksort in Oz using list comprehensions. 
36.  Create a monad for stacks that behaves similarly to the List monad in 

Haskell. 


