
C. Varela 1

Types in Programming Languages
Dynamic and Static Typing, Type Inference

(CTM 2.8.3, EPL* 4)
Abstract Data Types (CTM 3.7)

Monads (GIH** 9)

Carlos Varela
Rensselaer Polytechnic Institute

September 27, 2019

Partially adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

•  (*) Essentials of Programming Languages, 2nd ed., by Friedman, Wand, and Haynes, MIT Press
•  (**) A Gentle Introduction to Haskell, by Hudak, Peterson, and Fasel, 1999.

C. Varela 2

Data types
•  A datatype defines a set of values and an associated set of

operations
•  An abstract datatype is described by a set of operations
•  These operations are the only thing that a user of the

abstraction can assume
•  Examples:

–  Numbers, Records, Lists,… (Oz basic data types)
–  Stacks, Dictionaries,… (user-defined secure data types)

C. Varela 3

Types of typing
•  Languages can be weakly typed

–  Internal representation of types can be manipulated by a program
•  e.g., a string in C is an array of characters ending in ‘\0’.

•  Strongly typed programming languages can be further
subdivided into:
–  Dynamically typed languages

•  Variables can be bound to entities of any type, so in general
the type is only known at run-time, e.g., Oz, SALSA.

–  Statically typed languages
•  Variable types are known at compile-time, e.g., C++, Java.

C. Varela 4

Type Checking and Inference

•  Type checking is the process of ensuring a program is well-
typed.
–  One strategy often used is abstract interpretation:

•  The principle of getting partial information about the answers
from partial information about the inputs

•  Programmer supplies types of variables and type-checker
deduces types of other expressions for consistency

•  Type inference frees programmers from annotating
variable types: types are inferred from variable usage, e.g.
ML, Haskell.

C. Varela 5

Example: The identity function
•  In a dynamically typed language, e.g., Oz, it is possible to write a

generic function, such as the identity combinator:

 fun {Id X} X end

•  In a statically typed language, it is necessary to assign types to

variables, e.g. in a statically typed variant of Oz you would write:

 fun {Id X:integer}:integer X end

 These types are checked at compile-time to ensure the function is only
passed proper arguments. {Id 5} is valid, while {Id Id} is not.

C. Varela 6

Example: Improper Operations
•  In a dynamically typed language, it is possible to write an improper

operation, such as passing a non-list as a parameter, e.g. in Oz:

 declare fun {ShiftRight L} 0|L end
 {Browse {ShiftRight 4}} % unintended missuse
 {Browse {ShiftRight [4]}} % proper use

•  In a statically typed language, the same code would produce a type

error, e.g. in a statically typed variant of Oz you would write:

 declare fun {ShiftRight L:List}:List 0|L end
 {Browse {ShiftRight 4}} % compiler error!!
 {Browse {ShiftRight [4]}} % proper use

C. Varela 7

Example: Type Inference
•  In a statically typed language with type inference (e.g., ML), it is

possible to write code without type annotations, e.g. using Oz syntax:

 declare fun {Increment N} N+1 end
 {Browse {Increment [4]}} % compiler error!!
 {Browse {Increment 4}} % proper use

•  The type inference system knows the type of ’+’ to be:

 <number> X <number> à <number>

Therefore, Increment must always receive an argument of type
<number> and it always returns a value of type <number>.

C. Varela 8

Static Typing Advantages

•  Static typing restricts valid programs (i.e., reduces
language’s expressiveness) in return for:

–  Improving error-catching ability
–  Efficiency
–  Security
–  Partial program verification

C. Varela 9

Dynamic Typing Advantages

•  Dynamic typing allows all syntactically legal programs to
execute, providing for:

–  Faster prototyping (partial, incomplete programs can be tested)
–  Separate compilation---independently written modules can more

easily interact--- which enables open software development
–  More expressiveness in language

C. Varela 10

Combining static and dynamic
typing

•  Programming language designers do not have to make an
all-or-nothing decision on static vs dynamic typing.
–  e.g, Java has a root Object class which enables polymorphism

•  A variable declared to be an Object can hold an instance of any
(non-primitive) class.

•  To enable static type-checking, programmers need to annotate
expressions using these variables with casting operations, i.e., they
instruct the type checker to pretend the type of the variable is different
(more specific) than declared.

•  Run-time errors/exceptions can then occur if type conversion
(casting) fails.

•  Alice (Saarland U.) is a statically-typed variant of Oz.
•  SALSA-Lite is a statically-typed variant of SALSA.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Oz data types
Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

true false

Char

Tuple

List

String

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Oz data types (2)
Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

true false

Char

Tuple

List

String

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Abstract data types
•  A datatype is a set of values and an associated set of

operations
•  A datatype is abstract only if it is completely described by

its set of operations regardless of its implementation
•  This means that it is possible to change the implementation

of the datatype without changing its use
•  The datatype is thus described by a set of procedures
•  These operations are the only thing that a user of the

abstraction can assume

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Example: A Stack
•  Assume we want to define a new datatype 〈stack T〉 whose

elements are of any type T
fun {NewStack}: 〈Stack T〉
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉

•  These operations normally satisfy certain laws:
{IsEmpty {NewStack}} = true
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold
{Pop {NewStack} E} raises error

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Stack (implementation)
fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Stack (another implementation)
fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

fun {NewStack} emptyStack end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E = X S1 end end
fun {IsEmpty S} S==emptyStack end

C. Varela 17

Stack data type in Haskell
data Stack a = Empty | Stack a (Stack a)

newStack :: Stack a
newStack = Empty
push :: Stack a -> a -> Stack a
push s e = Stack e s
pop :: Stack a -> (Stack a,a)
pop (Stack e s) = (s,e)
isempty :: Stack a -> Bool
isempty Empty = True
isempty (Stack _ _) = False

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Dictionaries
•  The datatype dictionary is a finite mapping from a set T to 〈value〉,

where T is either 〈atom〉 or 〈integer〉
•  fun {NewDictionary}

–  returns an empty mapping
•  fun {Put D Key Value}

–  returns a dictionary identical to D except Key is mapped to Value
•  fun {CondGet D Key Default}

–  returns the value corresponding to Key in D, otherwise returns
Default

•  fun {Domain D}
–  returns a list of the keys in D

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Implementation
fun {Put Ds Key Value}
 case Ds
 of nil then [Key#Value]
 [] (K#V)|Dr andthen Key==K then
 (Key#Value) | Dr
 [] (K#V)|Dr andthen K>Key then
 (Key#Value)|(K#V)|Dr
 [] (K#V)|Dr andthen K<Key then
 (K#V)|{Put Dr Key Value}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Implementation
fun {CondGet Ds Key Default}
 case Ds
 of nil then Default
 [] (K#V)|Dr andthen Key==K then
 V
 [] (K#V)|Dr andthen K>Key then
 Default
 [] (K#V)|Dr andthen K<Key then
 {CondGet Dr Key Default}
 end
end
fun {Domain Ds}
 {Map Ds fun {$ K#_} K end}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Further implementations
•  Because of abstraction, we can replace the dictionary ADT

implementation using a list, whose complexity is linear (i.e.,
O(n)), for a binary tree implementation with logarithmic
operations (i.e., O(log(n)).

•  Data abstraction makes clients of the ADT unaware (other
than through perceived efficiency) of the internal
implementation of the data type.

•  It is important that clients do not use anything about the
internal representation of the data type (e.g., using {Length
Dictionary} to get the size of the dictionary). Using only
the interface (defined ADT operations) ensures that
different implementations can be used in the future.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Secure abstract data types:
Stack is not secure

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E}

 case S of X|S1 then E=X S1 end
end
fun {IsEmpty S} S==nil end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Secure abstract data types II
•  The representation of the stack is visible:

 [a b c d]

•  Anyone can use an incorrect representation, i.e., by passing

other language entities to the stack operation, causing it to
malfunction (like a|b|X or Y=a|b|Y)

•  Anyone can write new operations on stacks, thus breaking
the abstraction-representation barrier

•  How can we guarantee that the representation is invisible?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

Secure abstract data types III

•  The model can be extended. Here are two ways:
–  By adding a new basic type, an unforgeable constant called a name
–  By adding encapsulated state.

•  A name is like an atom except that it cannot be typed in on
a keyboard or printed!
–  The only way to have a name is if one is given it explicitly

•  There are just two operations on names:
N={NewName} : returns a fresh name
N1==N2 : returns true or false

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Secure abstract datatypes IV

proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 fun {$ K} if K==Key then X end end
 end
 fun {Unwrap C}
 {C Key}
 end
end

•  We want to « wrap » and « unwrap » values
•  Let us use names to define a wrapper & unwrapper

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Secure abstract data types:
A secure stack

With the wrapper & unwrapper we can build a secure stack

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push S E} {Wrap E|{Unwrap S}} end
 fun {Pop S E}
 case {Unwrap S} of X|S1 then E=X {Wrap S1} end
 end
 fun {IsEmpty S} {Unwrap S}==nil end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Capabilities and security
•  We say a computation is secure if it has well-defined and controllable

properties, independent of the existence of other (possibly malicious)
entities (either computations or humans) in the system

•  What properties must a language have to be secure?
•  One way to make a language secure is to base it on capabilities

–  A capability is an unforgeable language entity (« ticket ») that gives its
owner the right to perform a particular action and only that action

–  In our model, all values are capabilities (records, numbers, procedures,
names) since they give the right to perform operations on the values

–  Having a procedure gives the right to call that procedure. Procedures are
very general capabilities, since what they do depends on their argument

–  Using names as procedure arguments allows very precise control of rights;
for example, it allows us to build secure abstract data types

•  Capabilities originated in operating systems research
–  A capability can give a process the right to create a file in some directory

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Secure abstract datatypes V
•  We add two new concepts to the computation model
•  {NewChunk Record}

–  returns a value similar to record but its arity cannot be inspected
–  recall {Arity foo(a:1 b:2)} is [a b]

•  {NewName}
–  a function that returns a new symbolic (unforgeable, i.e. cannot be

guessed) name
–  foo(a:1 b:2 {NewName}:3) makes impossible to access the third

component, if you do not know the arity

•  {NewChunk foo(a:1 b:2 {NewName}:3) }
–  Returns what ?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Secure abstract datatypes VI
proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 {NewChunk foo(Key:X)}
 end
 fun {Unwrap C}
 C.Key
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Secure abstract data types:
Another secure stack

With the new wrapper & unwrapper we can build another secure stack
(since we only use the interface to wrap and unwrap, the code is
identical to the one using higher-order programming)

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push S E} {Wrap E|{Unwrap S}} end
 fun {Pop S E}
 case {Unwrap S} of X|S1 then E=X {Wrap S1} end
 end
 fun {IsEmpty S} {Unwrap S}==nil end

end

C. Varela 31

Stack abstract data type as a
module in Haskell

module StackADT (Stack,newStack,push,pop,isEmpty) where

data Stack a = Empty | Stack a (Stack a)
newStack = Empty
…

•  Modules can then be imported by other modules, e.g.:

module Main (main) where
import StackADT (Stack, newStack,push,pop,isEmpty)

main = do print (push (push newStack 1) 2)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 32

Declarative operations (1)
•  An operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

•  A declarative operation is:
–  Independent (depends only on its arguments, nothing else)
–  Stateless (no internal state is remembered between calls)
–  Deterministic (call with same operations always give same results)

•  Declarative operations can be composed together to yield
other declarative components
–  All basic operations of the declarative model are declarative and

combining them always gives declarative components

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Declarative
operation

Arguments

Results

Declarative operations (2)

rest of computation

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

Why declarative components (1)

•  There are two reasons why they are important:
•  (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.

–  The complexity (reasoning complexity) of a program composed of
declarative components is the sum of the complexity of the components

–  In general the reasoning complexity of programs that are composed of
nondeclarative components explodes because of the intimate interaction
between components

•  (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).

–  Simple algebraic and logical reasoning techniques can be used

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

Why declarative components (2)
•  Since declarative components are

mathematical functions, algebraic
reasoning is possible i.e.
substituting equals for equals

•  The declarative model of CTM
Chapter 2 guarantees that all
programs written are declarative

•  Declarative components can be
written in models that allow stateful
data types, but there is no guarantee

€

Given
f (a) = a2

We can replace f (a) in any other
equation
b = 7 f (a)2 becomes b = 7a4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Classification of
declarative programming

Declarative
programming

Descriptive

Programmable

Observational

Definitional Declarative
model

Functional
programming

Deterministic
logic programming

•  The word declarative means many things to
many people. Let’s try to eliminate the
confusion.

•  The basic intuition is to program by defining
the what without explaining the how

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Oz kernel language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration
 | proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end procedure introduction
 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’ procedure application
 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Why the Oz KL is declarative

•  All basic operations are declarative
•  Given the components (sub-statements) are declarative,

–  sequential composition
–  local statement
–  procedure definition
–  procedure call
–  if statement
–  case statement

are all declarative (independent, stateless, deterministic).

C. Varela 39

Monads
•  Purely functional programming is declarative in nature:

whenever a function is called with the same arguments, it
returns the same results independent of any other
computation state.

•  How to model the real world (that may have context
dependences, state, nondeterminism) in a purely functional
programming language?
–  Context dependences: e.g., does file exist in expected directory?
–  State: e.g., is there money in the bank account?
–  Nondeterminism: e.g., does bank account deposit happen before or

after interest accrual?

•  Monads to the rescue!

C. Varela 40

Type Classes in Haskell
•  Types in Haskell can be polymorphic, e.g. lists:

–  A list of integers is denoted as being of type [Integer].
–  A list of characters is denoted as being of type [Char].
–  The polymorphic type [a] corresponds to lists of an arbitrary type a.

•  Functions can be applicable to polymorphic types, e.g.:
–  Finding an element in a list can take either lists of integers or lists

of booleans, or lists of any type a:

elem x [] = False
elem x (y:ys) = (x == y) || elem x ys

C. Varela 41

Type Classes in Haskell
 elem x [] = False
 elem x (y:ys) = (x == y) || (elem x ys)

•  The type of elem is a->[a]->Bool for any type a that supports
equality checking (==).

•  This is specified in Haskell with a type constraint:
 elem :: (Eq a) => a->[a]->Bool

•  All types that support the == operation are said to be
instances of the type class Eq:

 class Eq a where
 (==) :: a -> a -> Bool

 x /= y = not (x == y) -- default method

C. Varela 42

Stack data type is an instance of
Eq type class

instance Eq a => Eq (Stack a) where
 Empty == Empty = True
 (Stack e1 s1) == (Stack e2 s2) = (e1 == e2) && (s1 == s2)
 _ == _ = False

C. Varela 43

Higher order types
•  You can think of the polymorphic Stack type as a type

constructor that receives a type and produces a new type,
e.g.:
–  Stack Integer produces a stack of integers type.

•  Consider the Functor higher-order type class:
 class Functor f where
 fmap :: (a->b) -> f a -> f b

•  We can declare Stack (not Stack a) to be an instance of the
Functor class:

 instance Functor Stack where
 fmap f Empty = Empty
 fmap f (Stack e s) = Stack (f e) (fmap f s)

Notice that f a applies type
(constructor) f to type a.

C. Varela 44

Functor class laws
•  All instances of the Functor class should respect some

laws:
 fmap id = id
 fmap (f . g) = fmap f . fmap g

•  Polymorphic types can be thought of as containers for
values of another type.

•  These laws ensure that the container shape (e.g., a list, a
stack, or a tree) is unchanged by fmap and that the contents
are not re-arranged by the mapping operation.

•  Functor is a monadic class. Other monadic classes are
Monad, and MonadPlus.

C. Varela 45

Monad class
•  The Monad class defines two basic operations:

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b -- bind
 return :: a -> m a
 fail :: String -> m a
 m >> k = m >>= _ -> k

•  The >>= infix operation binds two monadic values, while
the return operation injects a value into the monad
(container).

•  Example monadic classes are IO, lists ([]) and Maybe.

C. Varela 46

do syntactic sugar
•  In the IO class, x >>= y, performs two actions sequentially

(like the Seq combinator in the lambda-calculus) passing
the result of the first into the second.

•  Chains of monadic operations can use do:
 do e1 ; e2 = e1 >> e2
 do p <- e1; e2 = e1 >>= \p -> e2

•  Pattern match can fail, so the full translation is:
 do p <- e1; e2 = e1 >>= (\v -> case of p -> e2
 _ -> fail “s”)

•  Failure in IO monad produces an error, whereas failure in
the List monad produces the empty list.

C. Varela 47

Monad class laws
•  All instances of the Monad class should respect the

following laws:
 return a >>= k = k a
 m >>= return = m
 xs >>= return . f = fmap f xs
 m >>= (\x -> k x >>= h) = (m >>= k) >>= h

•  These laws ensure that we can bind together monadic
values with >>= and inject values into the monad
(container) using return in consistent ways.

•  The MonadPlus class includes an mzero element and an
mplus operation. For lists, mzero is the empty list ([]), and
the mplus operation is list concatenation (++).

C. Varela 48

List comprehensions with monads
lc1 = [(x,y) | x <- [1..10], y <- [1..x]]

lc1' = do x <- [1..10]
 y <- [1..x]
 return (x,y)

lc1'' = [1..10] >>= (\x ->
 [1..x] >>= (\y ->
 return (x,y)))

List comprehensions are
implemented using a built-in
list monad. Binding (l >>= f)

applies the function f to all the
elements of the list l and

concatenates the results. The
return function creates a

singleton list.

C. Varela 49

List comprehensions with monads (2)
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10]
lc3' = do x <- [1..10]
 y <- [1..x]
 True <- return (x+y<=10)
 return (x,y)

lc3'' = [1..10] >>= (\x ->
 [1..x] >>= (\y ->
 return (x+y<=10) >>=
 (\b -> case b of True -> return (x,y); _ -> fail “”)))

Guards in list
comprehensions assume
that fail in the List monad

returns an empty list.

C. Varela 50

An instruction counter monad
•  We will create an instruction counter using a monad R:

data R a = R (Resource -> (a, Resource)) -- the monadic type

instance Monad R where
 -- (>>=) :: R a -> (a -> R b) -> R b
 R c1 >>= fc2 = R (\r -> let (s,r') = c1 r
 R c2 = fc2 s in
 c2 r')
 -- return :: a -> R a
 return v = R (\r -> (v,r))

A computation is modeled
as a function that takes a
resource r and returns a

value of type a, and a new
resource r’. The resource
is implicitly carried state.

C. Varela 51

An instruction counter monad (2)
•  Counting steps:

 type Resource = Integer -- type synonym
 step :: a -> R a
 step v = R (\r -> (v,r+1))
 count :: R Integer -> (Integer, Resource)
 count (R c) = c 0

•  Lifting a computation to the monadic space:
 incR :: R Integer -> R Integer
 incR n = do nValue <- n

 step (nValue+1)

count (incR (return 5)) -- displays (6,1)

An inc computation
(Integer -> Integer) is lifted

to the monadic space:
(R Integer -> R Integer).

C. Varela 52

An instruction counter monad (3)
•  Generic lifting of operations to the R monad:

 lift1 :: (a->b) -> R a -> R b
 lift1 f n = do nValue <- n

 step (f nValue)
 lift2 :: (a->b->c) -> R a -> R b -> R c
 lift2 f n1 n2 = do n1Value <- n1

 n2Value <- n2
 step (f n1Value n2Value)

 instance Num a => Num (R a) where
 (+) = lift2 (+)
 (-) = lift2 (-)
 fromInteger = return . fromInteger

With generic lifting
operations, we can define

incR = lift1 (+1)

C. Varela 53

An instruction counter monad (4)
•  Lifting conditionals to the R monad:

 ifR :: R Bool -> R a -> R a -> R a
 ifR b t e = do bVal <- b

 if bVal then t
 else e

 (<=*) :: (Ord a) => R a -> R a -> R Bool
 (<=*) = lift2 (<=)

 fib :: R Integer -> R Integer
 fib n = ifR (n <=* 1) n (fib (n-1) + fib (n-2))

We can now count the
computation steps with:
count (fib 10) => (55,1889)

C. Varela 54

Monads summary
•  Monads enable keeping track of imperative features (state)

in a way that is modular with purely functional
components.
–  For example, fib remains functional, yet the R monad enables us to

keep a count of instructions separately.

•  Input/output, list comprehensions, and optional values
(Maybe class) are built-in monads in Haskell.

•  Monads are useful to modularly define semantics of
domain-specific languages.

C. Varela 55

Exercises
31.  Compare polymorphic lists in Oz and Haskell. What is the impact of

the type system on expressiveness and error-catching ability? Give
an example.

32.  Why is it important that the representation of an ADT be hidden from
its users? Name two mechanisms that can accomplish this
representation hiding in Oz and Haskell.

33.  Can type inference always deduce the type of an expression? If not,
give a counter-example.

34.  What is the difference between a type class and a type instance in
Haskell. Give an example.

35.  Write quicksort in Oz using list comprehensions.
36.  Create a monad for stacks that behaves similarly to the List monad in

Haskell.

