
C. Varela 1

Concurrent Programming with Actors
(PDCS 9, CPE 5*)

Support for the actor model in SALSA and Erlang

Carlos Varela
Rennselaer Polytechnic Institute

October 11, 2019

* Concurrent Programming in Erlang, by J. Armstrong, R. Virding, C. Wikström, M. Williams

Agha, Mason, Smith & Talcott
1.  Extend a functional language (call-by-valueλcalculus +

ifs and pairs) with actor primitives.

2.  Define an operational semantics for actor configurations.

3.  Study various notions of equivalence of actor expressions
and configurations.

4.  Assume fairness:
–  Guaranteed message delivery.
–  Individual actor progress.

C. Varela 2

λ-Calculus as a Model for
Sequential Computation

Syntax:
 e ::= v variable
 | λv.e function
 | e(e) application

Example of beta-reduction:

λx.x2(3)
 x2{3/x}

C. Varela 3

 λx.x2 3

 32

Actor Primitives

•  send(a,v)
–  Sends value v to actor a.

•  new(b)
–  Creates a new actor with behavior b (a λ-calculus functional

abstraction) and returns the identity/name of the newly created
actor.

•  ready(b)
–  Becomes ready to receive a new message with behavior b.

C. Varela 4

AMST Actor Language
Examples

b5 = rec(λy.λx.seq(send(x,5),ready(y)))
receives an actor name x and sends the number 5 to that actor, then it

becomes ready to process new messages with the same behavior y
(b5).

Sample usage:

 send(new(b5), a)

A sink, an actor that disregards all messages:

 sink = rec(λb.λm.ready(b))

C. Varela 5

Operational Semantics for
AMST Actor Language

•  Operational semantics of actor model as a labeled
transition relationship between actor configurations:

 [label]
k1 k2

•  Actor configurations model open system components:

–  Set of individually named actors
–  Messages “en-route”

C. Varela 6

Actor Configurations

k = α || µ

α is a function mapping actor names (represented as free

variables) to actor states.

µ is a multi-set of messages “en-route.”

C. Varela 7

Reduction contexts and redexes
Consider the expression:

 e = send(new(b5),a)
•  The redex r represents the next sub-expression to evaluate

in a left-first call-by-value evaluation strategy.
•  The reduction context R (or continuation) is represented as

the surrounding expression with a hole replacing the redex.

send(new(b5),a) = send(☐,a) new(b5)
e = R r where

R = send(☐,a)
r = new(b5)

C. Varela 8

Operational Semantics of Actors

C. Varela 9

Operational semantics example (1)

k0 = [send(☐,a) new(b5)]a || {}
k1 = [send(b,a)]a, [ready(b5)]b || {}

 [new:a,b]
k0 k1

k2 = [nil]a, [ready(b5)]b || {< b <= a >}

 [snd:a]
k1 k2

C. Varela 10

Operational semantics example (2)

k2 = [nil]a, [ready(b5)]b || {< b <= a >}
k3 = [nil]a,
[rec(λy.λx.seq(send(x,5),ready(y)))(a)]b
 || {}

 [rcv:b,a]
k2 k3

k4 = [nil]a, [seq(send(a,5),ready(b5)))]b
 || {}

 [fun:b]
k3 k4

C. Varela 11

Operational semantics example (3)

k4 = [nil]a,
 [seq(☐,ready(b5)) send(a,5)]b
 || {}

 [snd:a,5]
k4 k5

k5 = [nil]a, [seq(nil,ready(b5))]b
 || {< a <= 5 >}

C. Varela 12

Operational semantics example (4)

k5 = [nil]a, [seq(nil,ready(b5))]b
 || {< a <= 5 >}
k6 = [nil]a, [ready(b5)]b || {< a <= 5 >}

 [fun:b]
k5 k6

C. Varela 13

Semantics example summary
k0 = [send(new(b5),a)]a || {}
k6 = [nil]a, [ready(b5)]b || {< a <= 5 >}

[new:a,b] [snd:a] [rcv:b,a] [fun:b]
k0 k1 k2 k3 k4

[snd:a,5] [fun:b]
k4 k5 k6

C. Varela 14

This sequence of
(labeled) transitions

from k0 to k6 is called a
computation sequence.

Reference Cell
cell =

rec(λb.λc.λm.if(get?(m),
 seq(send(cust(m),c),

 ready(b(c))),

 if(set?(m),

 ready(b(contents(m))),

 ready(b(c)))))

Using the cell:
let a = new(cell(0)) in seq(send(a,mkset(7)),
 send(a,mkset(2)),

 send(a,mkget(c)))

C. Varela 15

Asynchronous communication

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Three receive transitions are enabled at k0.

[rcv:a,s(7)]
k0 k1

[rcv:a,s(2)]
k0 k1’

[rcv:a,g(c)]
k0 k1”

C. Varela 16

Multiple enabled
transitions can lead
to nondeterministic

behavior

The set of all
computations

sequences from k0 is
called the

computation tree
τ(k0).

Nondeterministic behavior (1)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}
k1 * [ready(cell(7))]a
 || {<a<=s(2)>, <a<=g(c)>}

k1’ * [ready(cell(2))]a
 || {<a<=s(7)>, <a<=g(c)>}

k1” * [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <c<=0>}

C. Varela 17

Customer c will get 2 or 7.

Customer c will get 0.

Nondeterministic behavior (2)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.:

[rcv:a,g(c)] [rcv:a,s(7)] [rcv:a,s(2)]
k0 k1 * k2 * k3

kf = [ready(cell(2))]a || {<c<=0>}

C. Varela 18

Final cell state is 2.

Nondeterministic behavior (3)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.:

[rcv:a,s(2)] [rcv:a,g(c)] [rcv:a,s(7)]
k0 k1 * k2 * k3

kf = [ready(cell(7))]a || {<c<=2>}

C. Varela 19

Final cell state is 7.

C. Varela 20

Erlang support for Actors
•  Actors in Erlang are modeled as processes. Processes start

by executing an arbitrary function. Related functions are
grouped into modules.

•  Messages can be any Erlang terms, e.g., atoms, tuples
(fixed arity), or lists (variable arity). Messages are sent
asynchronously.

•  State is modeled implicitly with function arguments.
Actors explicitly call receive to get a message, and must
use tail-recursion to get new messages, i.e., control loop is
explicit.

Reference Cell in Erlang
-module(cell).
-export([cell/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

C. Varela 21

Reference Cell in Erlang
-module(cell).
-export([cell/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

C. Varela 22

Encapsulated state Content.

Message
handlers

State change.

Explicit control loop: Actions
at the end of a message need

to include tail-recursive
function call. Otherwise actor

(process) terminates.

Reference Cell in Erlang
-module(cell).
-export([cell/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

C. Varela 23

Content is an argument to
the cell function.

{set, NewContent} is a
tuple pattern. set is an
atom. NewContent is a

variable.
Messages are checked one by
one, and for each message,

first pattern that applies gets
its actions (after ->)

executed. If no pattern
matches, messages remain in

actor’s mailbox.

Cell Tester in Erlang
-module(cellTester).
-export([main/0]).

main() -> C = spawn(cell,cell,[0]),
 C!{set,7},
 C!{set,2},
 C!{get,self()},
 receive
 Value ->

 io:format("~w~n”,[Value])
 end.

C. Varela 24

Cell Tester in Erlang
-module(cellTester).
-export([main/0]).

main() -> C = spawn(cell,cell,[0]),
 C!{set,7},
 C!{set,2},
 C!{get,self()},
 receive
 Value ->

 io:format("~w~n”,[Value])
 end.

C. Varela 25

Actor creation (spawn)

Message passing (!)

receive waits until a
message is available.

Cell Tester in Erlang
-module(cellTester).
-export([main/0]).

main() -> C = spawn(cell,cell,[0]),
 C!{set,7},
 C!{set,2},
 C!{get,self()},
 receive
 Value ->

 io:format("~w~n",[Value])
 end.

C. Varela 26

[0] is a list with the arguments
to the module’s function. General

form:
spawn(module, function,

arguments)

Function calls take the form:
module:function(args)

self() is a built-in
function (BIF) that

returns the process id of
the current process.

C. Varela 27

Actors/SALSA
•  Actor Model

–  A reasoning framework to model concurrent
computations

–  Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Agha, Mason, Smith and Talcott, “A Foundation for Actor
Computation”, J. of Functional Programming, 7, 1-72, 1997.

•  SALSA
–  Simple Actor Language System and

Architecture
–  An actor-oriented language for mobile and

internet computing
–  Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

C. Varela 28

SALSA support for Actors

•  Programmers define behaviors for actors. Actors are

instances of behaviors.

•  Messages are modeled as potential method invocations.
Messages are sent asynchronously.

•  State is modeled as encapsulated objects/primitive types.

•  Tokens represent future message return values.

Continuation primitives are used for coordination.

C. Varela 29

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

C. Varela 30

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

Encapsulated state content.

Actor constructor.

Message handlers.

State change.

C. Varela 31

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

return asynchronously
sets token associated to

get message.

Implicit control loop:
End of message implies
ready to receive next

message.

C. Varela 32

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 c <- set(7);
 c <- set(2);
 token t = c <- get();
 standardOutput <- println(t);

 }
}

C. Varela 33

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 c <- set(7);
 c <- set(2);
 token t = c <- get();
 standardOutput <- println(t);
 }

}

Actor creation (new)

Message passing (<-)

println message can
only be processed
when token t from
c’s get() message

handler has been
produced.

C. Varela 34

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 c <- set(7);
 c <- set(2);
 token t = c <- get();
 standardOutput <- println(t);
 }

}

All message
passing is

asynchronous.

println message is
called partial until

token t is produced.
Only full messages
(with no pending

tokens) are delivered
to actors.

C. Varela 35

SALSA compiles to Java

•  SALSA source files are compiled into Java source files before being compiled into
Java byte code.

•  SALSA programs may take full advantage of the Java API.

Join Continuations
Consider:

 treeprod = rec(λf.λtree.
 if(isnat(tree),

 tree,
 f(left(tree))*f(right(tree))))

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.

C. Varela 36

Tree Product Behavior in AMST
Btreeprod =

 rec(λb.λm.
 seq(if(isnat(tree(m)),

 send(cust(m),tree(m)),

 let newcust=new(Bjoincont(cust(m))),

 lp = new(Btreeprod),

 rp = new(Btreeprod) in
 seq(send(lp,

 pr(left(tree(m)),newcust)),

 send(rp,

 pr(right(tree(m)),newcust)))),

 ready(b)))

C. Varela 37

Join Continuation in AMST

Bjoincont =

 λcust.λfirstnum.ready(λnum.

 seq(send(cust,firstnum*num),

 ready(sink)))

C. Varela 38

Sample Execution

C. Varela 39

cust

f(tree,cust)

JC JC

cust cust JC

(a) (b)

f(left(tree),JC) f(right(tree),JC)

Sample Execution

C. Varela 40

cust

JC’ JC’

JC

cust JC

firstnum

(c)

JC'

JC

firstnum

firstnum

JC'

cust cust
firstnum

JC

(d)

JC’

f(left(tree),JC)

Sample Execution

C. Varela 41

num

Cust

firstnum

Cust

JC

(e)

firstnum * num

Cust

(f)

Tree Product Behavior in Erlang
-module(treeprod).
-export([treeprod/0,join/1]).

treeprod() ->
 receive
 {{Left, Right}, Customer} ->
 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),

 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->
 Customer ! Number
 end,
 treeprod().

join(Customer) -> receive V1 -> receive V2 -> Customer ! V1*V2 end end.

C. Varela 42

Tree Product Sample Execution

2> TP = spawn(treeprod,treeprod,[]).

<0.40.0>

3> TP ! {{{{5,6},2},{3,4}},self()}.

{{{{5,6},2},{3,4}},<0.33.0>}

4> flush().
Shell got 720

ok

5>

C. Varela 43

C. Varela 44

Tree Product Behavior in SALSA

module treeprod;
import tree.Tree;

behavior TreeProduct {

 int multiply(Object[] results){
 return (Integer) results[0] * (Integer) results[1];
 }
 int compute(Tree t){
 if (t.isLeaf()) return t.value();
 else {
 TreeProduct lp = new TreeProduct();
 TreeProduct rp = new TreeProduct();
 join {
 lp <- compute(t.left());
 rp <- compute(t.right());
 } @ multiply(token) @ currentContinuation;
 }
 }
}

This code uses token-passing
continuations (@,token), a

join block (join), and a first-
class continuation

(currentContinuation).

Tree Product Tester
module treeprod;
import tree.Tree;

behavior TreeProductTester {

 void act(String[] args) {

 Tree t = new Tree(new Tree(new Tree(5,6),new Tree(2)),
 new Tree(3,4));
 TreeProduct tp = new TreeProduct();

 tp <- compute(t) @ standardOutput <- println(token);
 }
}

C. Varela 45

Use as follows:
% javac tree/Tree.java
% salsac treeprod/*
% salsa treeprod/TreeProductTester
720

C. Varela 46

Summary
•  Actors are concurrent entities that react to messages.

–  State is completely encapsulated. There is no shared memory!
–  Message passing is asynchronous.
–  Actor run-time has to ensure fairness.

•  AMST extends the call by value lambda calculus with actor primitives.
State is modeled as function arguments. Actors use ready to receive
new messages.

•  Erlang extends a functional programming language core with
processes that run arbitrary functions. State is implicit in the
function’s arguments. Control loop is explicit: actors use receive
to get a message, and tail-form recursive call to continue.

•  SALSA extends an object-oriented programming language (Java) with
universal actors. State is encapsulated in instance variables. Control
loop is implicit: ending a message handler, signals readiness to receive
a new message.

Exercises
41. Define pairing primitives (pr, 1st, 2nd) in the pure

lambda calculus.
42. PDCS Exercise 4.6.1 (page 77).
43. Modify the treeprod behavior in Erlang to reuse the

tree product actor to compute the product of the left
subtree. (See PDCS page 63 for the corresponding
tprod2 behavior in AMST.)

44. PDCS Exercise 9.6.1 (page 203). Modify your code as in
Exercise 43.

45. Create a concurrent fibonacci behavior in Erlang
using join continuations, and in SALSA using a join
block.

C. Varela 47

