
C. Varela 1

Mobility, garbage collection, load
balancing, visualization (SALSA)

Fault-tolerance, hot code loading (Erlang)
(PDCS 9; CPE 7*)

Carlos Varela

Rensselaer Polytechnic Institute

October 22, 2019

* Concurrent Programming in Erlang, by J. Armstrong, R. Virding, C. Wikström, M. Williams

C. Varela 2

Advanced Features of Actor
Languages

•  SALSA and Erlang support the basic primitives of the actor model:
–  Actors can create new actors.
–  Message passing is asynchronous.
–  State is encapsulated.
–  Run-time ensures fairness.

•  SALSA also introduces advanced coordination abstractions: tokens, join
blocks, and first-class continuations; SALSA supports distributed
systems development including actor mobility and garbage collection.
Research projects have also investigated load balancing, malleability
(IOS), scalability (COS), and visualization (OverView).

•  Erlang introduces a selective receive abstraction to enforce different
orders of message delivery, including a timeout mechanism to bypass
blocking behavior of receive primitive. Erlang also provides error
handling abstractions at the language level, and dynamic (hot) code
loading capabilities.

C. Varela 3

Universal Actor Names (UAN)
•  Consists of human readable names.
•  Provides location transparency to actors.
•  Name to locator mapping updated as actors migrate.
•  UAN servers provide mapping between names and

locators.
–  Example Universal Actor Name:

 uan://wwc.cs.rpi.edu:3030/cvarela/calendar

 Name server
address and

(optional) port.

Unique
relative

actor name.

C. Varela 4

Universal Actor Locators (UAL)

•  Theaters provide an execution environment for universal
actors.

•  Provide a layer beneath actors for message passing and
migration.

•  When an actor migrates, its UAN remains the same, while
its UAL changes to refer to the new theater.

•  Example Universal Actor Locator:
 rmsp://wwc.cs.rpi.edu:4040

Theater’s IP
address and

(optional) port.

C. Varela 5

Migration

•  Obtaining a remote actor reference and migrating
the actor.

 TravelAgent a = (TravelAgent)
 TravelAgent.getReferenceByName
 (“uan://myhost/ta”);

 a <- migrate(“yourhost:yourport”) @
 a <- printItinerary();

C. Varela 6

Agent Migration Example

module migrate;

behavior Migrate {

 void print() {
 standardOutput<-println("Migrate actor is here.");
 }

 void act(String[] args) {

 if (args.length != 3) {
 standardError<-println("Usage: salsa migrate.Migrate <UAN> <srcUAL> <destUAL>");
 return;
 }

 UAN uan = new UAN(args[0]);
 UAL ual = new UAL(args[1]);

 Migrate migrateActor = new Migrate() at (uan, ual);

 migrateActor<-print() @
 migrateActor<-migrate(args[2]) @
 migrateActor<-print();
 }
}

C. Varela 7

Migration Example

•  The program must be given valid universal actor name and
locators.
–  Appropriate name server and theaters must be running.
–  Theater must be run from directory with access to the code for the

migrating actor’s behavior.

•  After remotely creating the actor. It sends the print
message to itself before migrating to the second theater
and sending the message again.

C. Varela 8

Compilation and Execution
$ salsac migrate/Migrate.salsa
SALSA Compiler Version 1.0: Reading from file Migrate.salsa . . .
SALSA Compiler Version 1.0: SALSA program parsed successfully.
SALSA Compiler Version 1.0: SALSA program compiled successfully.
$ salsa migrate.Migrate
Usage: salsa migrate.Migrate <UAN> <srcUAL> <destUAL>

1.  Compile Migrate.salsa file into Migrate.java, and then bytecode
(.class files.)

2.  Execute Name Server
3.  Execute Theater 1 and Theater 2 (with access to migrate directory)
4.  Execute Migrate in any computer with Internet access

C. Varela 9

Migration Example

theater
1

theater
2

The actor will print "Migrate actor is
here." at theater 1 then at theater 2.

UAN
Server

C. Varela 10

World Migrating Agent Example

150-160 ms
240-250 ms
3-7 s
25-30 s

LAN minimal actor migration
LAN 100Kb actor migration
WAN minimal actor migration
WAN 100Kb actor migration

148 us
30-60 ms
2-3 s

Local message sending
LAN message sending
WAN message sending

386us Local actor creation

Sparc 20 Solaris 2.6 JDK 1.1.6 Tokyo, Japan solar.isr.co.jp

Pentium II 350Mhz Linux 2.2.5 JDK 1.2pre2 Paris, France vulcain.ecoledoc.lip6.fr

Ultra 2 Solaris 2.5.1 JDK 1.1.6 Urbana IL, USA yangtze.cs.uiuc.edu

Processor OS/JVM Location Host

C. Varela 11

Reference Cell Service Example
module dcell;

behavior Cell implements ActorService{

 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() {
 standardOutput <- println (“Returning: ”+content);
 return content;
 }

 void set(Object newContent) {
 standardOutput <- println (“Setting: ”+newContent);
 content = newContent;
 }

}

implements ActorService
signals that actors with this

behavior are not to be
garbage collected.

C. Varela 12

Moving Cell Tester Example
module dcell;

behavior MovingCellTester {

 void act(String[] args) {

 if (args.length != 3){

 standardError <- println(“Usage:
 salsa dcell.MovingCellTester <UAN> <UAL1> <UAL2>”);
 return;
 }

 Cell c = new Cell(“Hello”) at (new UAN(args[0]), new UAL(args[1]));

 standardOutput <- print(”Initial Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- migrate(args[2]) @

 c <- set(“New World”) @
 standardOutput <- print(”New Value at New Location:”) @
 c <- get() @ standardOutput <- println(token);
 }
}

C. Varela 13

Address Book Service

module addressbook;
import java.util.*

behavior AddressBook implements ActorService {

 Hashtable name2email;
 AddressBook() {

 name2email = new HashTable();
 }

 String getName(String email) { … }
 String getEmail(String name) { … }
 boolean addUser(String name, String email) { … }

 void act(String[] args) {

 if (args.length != 0){
 standardOutput<-println(“Usage: salsa -Duan=<UAN> -Dual=<UAL>
 addressbook.AddressBook”);
 }

 }
}

C. Varela 14

Address Book Migrate Example

module addressbook;

behavior MigrateBook {

 void act(String[] args) {
 if (args.length != 2){

 standardOutput<-println(“Usage: salsa
 addressbook.MigrateBook <AddressBookUAN> <NewUAL>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-migrate(args(1));

 }
}

Carlos Varela 15

Actor Garbage Collection

•  Implemented since SALSA 1.0 using pseudo-root
approach.

•  Includes distributed cyclic garbage collection.
•  For more details, please see:

Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile Actor

Systems: The Pseudo Root Approach. In Proceedings of the First International
Conference on Grid and Pervasive Computing (GPC 2006), Taichung, Taiwan, May
2006. Springer-Verlag LNCS.

Wei-Jen Wang, Carlos Varela, Fu-Hau Hsu, and Cheng-Hsien Tang. Actor Garbage
Collection Using Vertex-Preserving Actor-to-Object Graph Transformations. In
Advances in Grid and Pervasive Computing, volume 6104 of Lecture Notes in Computer
Science, Bologna, pages 244-255, May 2010. Springer Berlin / Heidelberg.

Carlos Varela 16

Challenge 1: Actor GC vs. Object GC

Blocked ActorRoot Actor Unblocked Actor Reference

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

1 2 3 4

5 6 7

Passive Object Reference Graph

8

9

8

9

Live Actor

Live Object

Carlos Varela 17

Challenge 2: Non-blocking
communication

•  Following references to mark
live actors is not safe!

A A A A

B B B BC C C C

Stage 1 Stage 2 Stage 3 Stage 4

Blocked Actor Unblocked Actor Reference Message

An example of mutation and asynchronous delivery of messages

Carlos Varela 18

Challenge 2: Non-blocking
communication

•  Following references to mark
live actors is not safe!

•  What can we do?
–  We can protect the reference

from deletion and mark the
sender live until the sender
knows the message has arrived

A

B

Blocked
Actor

Message Reference Marked
Live
Actor

Protected
Reference

Carlos Varela 19

Challenge 2: Non-blocking
communication (continued)

•  How can we guarantee the safety of
an actor referenced by a message?

•  The solution is to protect the
reference from deletion and mark
the sender live until the sender
knows the message has arrived

A

C B

Blocked
Actor

Message Reference Marked
Live
Actor

Protected
Reference

Carlos Varela 20

Challenge 3: Distribution and Mobility

•  What if an actor is remotely referenced?

–  We can maintain an inverse reference list (only visible to the
garbage collector) to indicate whether an actor is referenced.

–  Three operations change inverse references: actor creation,
reference passing, and reference deletion.

–  The inverse reference registration must be based on non-blocking
and non-First-In-First-Out communication!

Carlos Varela 21

The Pseudo Root Approach
•  Pseudo roots:

–  Treat unblocked actors, migrating actors, and roots as pseudo roots.
–  Map in-transit messages and references into protected references and

pseudo roots
–  Use inverse reference list (only visible to garbage collectors) to identify

remotely referenced actors
•  Actors which are not reachable from any pseudo root are garbage.

Carlos Varela 22

IOS: Load Balancing and
Malleability

•  Middleware
–  A software layer between distributed applications and

operating systems.
–  Alleviates application programmers from directly dealing

with distribution issues
•  Heterogeneous hardware/O.S.s
•  Load balancing
•  Fault-tolerance
•  Security
•  Quality of service

•  Internet Operating System (IOS)
–  A decentralized framework for adaptive, scalable execution
–  Modular architecture to evaluate different distribution and

reconfiguration strategies

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:
Middleware for Adaptive Distributed Computing”, International Journal of High
Performance Computing and Applications, 2006.

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware
Framework for Dynamically Reconfigurable Scientific Computing”, Grid Computing and
New Frontiers of High Performance Processing, Elsevier 2005.

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp.

Carlos Varela 23

Middleware Architecture

Carlos Varela 24

IOS Architecture

•  IOS middleware layer

–  A Resource Profiling Component
•  Captures information about actor and network topologies and

available resources

–  A Decision Component
•  Takes migration, split/merge, or replication decisions based on

profiled information

–  A Protocol Component
•  Performs communication with other agents in virtual network (e.g.,

peer-to-peer, cluster-to-cluster, centralized.)

Carlos Varela 25

A General Model for Weighted Resource-
Sensitive Work-Stealing (WRS)

•  Given:
A set of resources, R = {r0 … rn}
A set of actors, A = {a0 … an}
ω is a weight, based on importance of the resource r to the performance of a set of actors A

0 ≤ ω(r,A) ≤ 1
Σall r ω(r,A) = 1

α(r,f) is the amount of resource r available at foreign node f
υ(r,l,A) is the amount of resource r used by actors A at local node l
M(A,l,f) is the estimated cost of migration of actors A from l to f
L(A) is the average life expectancy of the set of actors A

•  The predicted increase in overall performance Γ gained by migrating A from l to f,
where Γ ≤ 1:

Δ(r,l,f,A) = (α(r,f) – υ(r,l,A)) / (α(r,f) + υ(r,l,A))
Γ = Σall r (ω(r,A) * Δ(r,l,f,A)) – M(A,l,f)/(10+log L(A))

•  When work requested by f, migrate actor(s) A with greatest predicted increase in overall
performance, if positive.

Carlos Varela 26

Impact of Process/Actor
Granularity

0

50

100

150

200

250

300

350

2 3 4 5 6 8 10 12 20 30 40 60

58.14 38.76 29.07 23.26 19.38 14.54 11.63 9.69 5.81 3.88 2.91 1.94

Number of Processes/ Process Data Size (KB)

T
h

ro
u

g
h

p
u

t
(I

te
ra

ti
o

n
s

/s
)

Experiments on a dual-processor node (SUN Blade 1000)

Carlos Varela 27

Component Malleability
•  New type of reconfiguration:

–  Applications can dynamically change component granularity
•  Malleability can provide many benefits for HPC

applications:
–  Can more adequately reconfigure applications in response to a

dynamically changing environment:
•  Can scale application in response to dynamically joining

resources to improve performance.
•  Can provide soft fault-tolerance in response to dynamically

leaving resources.
–  Can be used to find the ideal granularity for different architectures.
–  Easier programming of concurrent applications, as parallelism can

be provided transparently.

Carlos Varela 28

Component Malleability

•  Modifying application component granularity dynamically (at run-
time) to improve scalability and performance.

•  SALSA-based malleable actor implementation.
•  MPI-based malleable process implementation.
•  IOS decision module to trigger split and merge reconfiguration.
•  For more details, please see:

El Maghraoui, Desell, Szymanski and Varela,“Dynamic Malleability in MPI

Applications”, CCGrid 2007, Rio de Janeiro, Brazil, May 2007, nominated
for Best Paper Award.

Carlos Varela 29

Distributed Systems Visualization

•  Generic online Java-based distributed systems visualization tool
•  Uses a declarative Entity Specification Language (ESL)
•  Instruments byte-code to send events to visualization layer.
•  For more details, please see:

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for Generic Online
Visualization of Distributed Systems. In Proceedings of the European Joint Conferences
on Theory and Practice of Software (ETAPS 2004), eclipse Technology eXchange (eTX)
Workshop, Barcelona, Spain, March 2004.

Gustavo A. Guevara S., Travis Desell, Jason Laporte, and Carlos A. Varela. Modular
Visualization of Distributed Systems. CLEI Electronic Journal, 14:1-17, April 2011.
Note: Best papers from CLEI 2010.

Overview Architecture

Example Specifications for SALSA

entity UniversalActor is salsa.language.UniversalActor$State {
 when start putMessageInMailbox(salsa.language.Message message)
 -> communication(message.getSource().getId(),
 message.getTarget().getId());
 when finish finalize()
 -> deletion(this.getId());

}

entity WWCSystem is wwc.messaging.WWCSystem$State {
 when start createActor(salsa.naming.UAN uan,

 salsa.naming.UAL ual,
 java.lang.String className)
 -> creation(uan.getId(), ual.getHostAndPort());

 when start addActor(salsa.language.Actor actor)

 -> migration(actor.getUAN().getId(),
 actor.getUAL().getHostAndPort());

}

Chord application topology

2D-Mesh application topology

Hypercube application topology

Visualizing distribution and
mobility

Carlos Varela 36

Open Source Code
•  Consider to contribute!
•  Visit our web pages for more info:

–  SALSA: http://wcl.cs.rpi.edu/salsa/
–  IOS: http://wcl.cs.rpi.edu/ios/
–  OverView: http://wcl.cs.rpi.edu/overview/
–  COS: http://wcl.cs.rpi.edu/cos/
–  PILOTS: http://wcl.cs.rpi.edu/pilots/
–  MilkyWay@Home: http://milkyway.cs.rpi.edu/

C. Varela 37

Erlang Language Support for Fault-Tolerant
Computing

•  Erlang provides linguistic abstractions for:

–  Error detection.
•  Catch/throw exception handling.
•  Normal/abnormal process termination.
•  Node monitoring and exit signals.

–  Process (actor) groups.
–  Dynamic (hot) code loading.

C. Varela 38

Exception Handling

•  To protect sequential code from errors:

catch Expression

•  To enable non-local return from a function:

throw({ab_exception, user_exists})

If failure does not occur in Expression
evaluation, catch Expression returns

the value of the expression.

C. Varela 39

Address Book Example
-module(addressbook).
-export([start/0,addressbook/1]).

start() ->
 register(addressbook, spawn(addressbook, addressbook, [[]])).

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 From ! {addressbook, ok},
 addressbook(add(Name, Email, Data));
 …
end.

add(Name, Email, Data) ->
 case getemail(Name, Data) of
 undefined ->
 [{Name,Email}|Data];
 _ -> % if Name already exists, add is ignored.
 Data
 end.
getemail(Name, Data) -> …

C. Varela 40

Address Book Example with
Exception

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 case catch add(Name, Email, Data) of
 {ab_exception, user_exists} ->
 From ! {addressbook, no},
 addressbook(Data);
 NewData->
 From ! {addressbook, ok},
 addressbook(NewData)
 end;
 …
end.

add(Name, Email, Data) ->
 case getemail(Name, Data) of
 undefined ->
 [{Name,Email}|Data];
 _ -> % if Name already exists, exception is thrown.
 throw({ab_exception,user_exists})
 end.

C. Varela 41

Normal/abnormal termination

•  To terminate an actor, you may simply return from the function
the actor executes (without using tail-form recursion). This is
equivalent to calling:
exit(normal).

•  Abnormal termination of a function, can be programmed:
exit({ab_error, no_msg_handler})

 equivalent to:
throw({’EXIT’,{ab_error, no_msg_handler}})

•  Or it can happen as a run-time error, where the Erlang run-time
sends a signal equivalent to:
exit(badarg) % Wrong argument type
exit(function_clause) % No pattern match

C. Varela 42

Address Book Example with
Exception and Error Handling

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 case catch add(Name, Email, Data) of
 {ab_exception, user_exists} ->
 From ! {addressbook, no},
 addressbook(Data);
 {ab_error, What} -> … % programmer-generated error (exit)
 {’EXIT’, What} -> … % run-time-generated error
 NewData->
 From ! {addressbook, ok},
 addressbook(NewData)
 end;
 …
end.

C. Varela 43

Node monitoring

•  To monitor a node:

monitor_node(Node, Flag)

If flag is true, monitoring starts. If
false, monitoring stops. When a

monitored node fails, {nodedown,
Node} is sent to monitoring process.

C. Varela 44

Address Book Client Example
with Node Monitoring

-module(addressbook_client).
-export([getEmail/1,getName/1,addUser/2]).

addressbook_server() -> 'addressbook@127.0.0.1'.

getEmail(Name) -> call_addressbook({getEmail, Name}).
getName(Email) -> call_addressbook({getName, Email}).
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}).

call_addressbook(Msg) ->
 AddressBookServer = addressbook_server(),
 monitor_node(AddressBookServer, true),
 {addressbook, AddressBookServer} ! {self(), Msg},
 receive
 {addressbook, Reply} ->
 monitor_node(AddressBookServer, false),
 Reply;
 {nodedown, AddressBookServer} ->
 no
 end.

C. Varela 45

Process (Actor) Groups

•  To create an actor in a specified remote node:

Agent = spawn(host, travel, agent, []);

•  To create an actor in a specified remote node and create a link to
the actor:

Agent = spawn_link(host, travel, agent, []);

An ’EXIT’ signal will be sent to the originating actor if the host
node does not exist.

C. Varela 46

Group Failure

•  Default error handling for linked processes is as follows:
–  Normal exit signal is ignored.
–  Abnormal exit (either programmatic or system-generated):

•  Bypass all messages to the receiving process.
•  Kill the receiving process.
•  Propagate same error signal to links of killed process.

•  All linked processes will get killed if a participating process
exits abnormally.

C. Varela 47

Dynamic code loading

•  To update (module) code while running it:

-module(m).
-export([loop/0]).

loop() ->
 receive
 code_switch ->
 m:loop();
 Msg -> ...
 loop()
 end.

code_switch message
dynamically loads the

new module code.
Notice the difference
between m:loop()

and loop().

C. Varela 48

Exercises

57.  Download and execute the Migrate.salsa example.
58.  Download OverView and visualize a Fibonacci computation in

SALSA. Observe garbage collection behavior.
59.  Download social networking example (PDCS Chapter 11) in SALSA

and execute it in a distributed setting.
60.  PDCS Exercise 11.8.2 (page 257).
61.  Create a ring of linked actors in Erlang.

a.  Cause one of the actors to terminate abnormally and observe default group failure
behavior.

b.  Modify default error behavior so that upon an actor failure, the actor ring
reconnects.

62.  Modify the cell example, so that a new “get_and_set” operation is
supported. Dynamically (as cell code is running) upgrade the cell
module code to use your new version.

