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The first programmer ever

Ada Augusta, the Countess of Lovelace, the daughter of the poet Lord Byron

Circa 1843

Using Babbage’s Analytical Engine
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The first “high-level” (compiled) 
programming language

FORTRAN

1954

Backus at IBM

It was called “an automatic coding system”, not a “programming language”

Used for numerical computing
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The first functional programming 
language

Lisp

1958

McCarthy at Stanford

For LISts Processing---lists represent both code and data

Used for symbolic manipulation
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The first object oriented
programming language

Simula

1962

Dahl and Nygaard at University of Oslo, Norway

Used for computer simulations
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The first logic programming 
language

Prolog

1972

Roussel and Colmerauer at Marseilles University, France

For “PROgrammation en LOGique”.

Used for natural language processing and automated theorem proving
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The first concurrent 
programming language

Concurrent Pascal

1974

Hansen at Caltech

Used for operating systems development
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The first concurrent actor 
programming language

PLASMA

1975

Hewitt at MIT

Used for artificial intelligence (planning)
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The first scripting language

REXX

1982

Cowlishaw at IBM

Only one data type:  character strings

Used for “macro” programming and prototyping
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The first multi-paradigm 
programming language

Oz

1995

Smolka at Saarland University, Germany

A logic, functional, imperative, object-oriented, constraint, 
concurrent, and distributed programming language

Used for teaching programming and programming languages research
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Other programming languages

Algol (Naur 1958)
Cobol (Hopper 1959)

BASIC (Kennedy and Kurtz 1964)
Pascal (Wirth 1970)

C (Kernighan and Ritchie 1971)
Ada (Whitaker 1979)

Go (Griesemer, Pike, Thompson 2009)

Smalltalk (Kay 1980)
C++ (Stroustrop 1980)

Eiffel (Meyer 1985)
Java (Gosling 1994)
C# (Hejlsberg 2000)

Scala (Odersky et al 2004)
Swift (Lattner 2014)

Act (Lieberman 1981)
ABCL (Yonezawa 1988)

Actalk (Briot 1989)
Erlang (Armstrong 1990)

E (Miller et al 1998)
SALSA (Varela and Agha 1999)

Elixir (Valim 2011)

ML (Milner 1973)
Scheme (Sussman and Steele 1975)

Haskell (Hughes et al 1987)
Clojure (Hickey 2007)

Python (van Rossum 1985)
Perl (Wall 1987)

Tcl (Ousterhout 1988)
Lua (Ierusalimschy et al 1994)

JavaScript (Eich 1995)
PHP (Lerdorf 1995)

Ruby (Matsumoto 1995)

Imperative

Object-Oriented Actor-Oriented

Functional

Scripting
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Essentials: What is a 
Computation Model?

• A computation model: describes a language and how the 
sentences (expressions, statements) of the language are 
executed by an abstract machine

• A set of programming techniques: to express solutions to 
the problems you want to solve

• A set of reasoning techniques: to prove properties about 
programs to increase the confidence that they behave 
correctly and to calculate their efficiency
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Declarative Computation Model
• Guarantees that the computations are evaluating functions 

on (partial) data structures
• The core of functional programming (LISP, Scheme, ML, 

Haskell)
• The core of logic programming (Prolog, Mercury)
• Stateless vs. stateful (imperative) programming
• Declarative programming underlies concurrent and object-

oriented programming (Erlang, C++, Java, SALSA)
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Defining a programming language

• Syntax (grammar)
• Semantics (meaning)
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Language syntax
• Defines what the legal programs are, i.e. programs that can 

be executed by a machine (interpreter)
• Syntax is defined by grammar rules
• A grammar defines how to make ‘sentences’ out of 
‘words’

• For programming languages: sentences are called 
statements (commands, expressions)

• For programming languages: words are called tokens
• Grammar rules are used to describe both tokens and 

statements
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Language Semantics
• Semantics defines what a program does when it executes
• Semantics should be simple and yet allow reasoning about 

programs (correctness, execution time, and memory use)
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Approaches to semantics

Programming Language

Kernel Language

Operational model

Formal calculus Abstract machine

Aid the programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
l-calculus, predicate calculus,
p-calculus

Aid to the implementer
Efficient execution on
a real machine
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Programming Paradigms
• We will cover theoretical and practical aspects of three 

different programming paradigms:
Paradigm Theory Languages

Functional
Programming

Lambda Calculus Oz
Haskell

Concurrent
Programming

Actor Model SALSA
Erlang

Logic Programming First-Order Logic
Horn Clauses

Prolog
Oz

• Each paradigm will be evaluated with a Programming Assignment (PA) 
and an Exam.

• Two highest PA grades count for 40% of total grade. Lowest PA grade 
counts for 10% of the total grade. Two highest Exam grades count for 40% 
of total grade. Lowest Exam grade counts for 10% of the total grade.  
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Lambda Calculus (PDCS 2)
alpha-renaming, beta reduction, applicative and 

normal evaluation orders, Church-Rosser theorem, 
combinators
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Mathematical Functions
Take the mathematical function:

f(x) = x2

Assume f is a function that maps integers to integers:

f: Z ® Z

We apply the function f to numbers in its domain to obtain a number 
in its range, e.g.:

f(-2) = 4

Function

Domain Range
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Function Composition
Given the mathematical functions:

f(x) = x2 ,  g(x) = x+1 

f •g is the composition of f and g:

f •g (x) = f(g(x))

f • g (x) = f(g(x)) = f(x+1) = (x+1)2 = x2 + 2x + 1 
g • f (x) = g(f(x)) = g(x2) = x2 + 1 

Function composition is therefore not commutative.  Function 
composition is a (higher-order) function, in this example, with the 
following type:

• : (Z ® Z) x (Z ® Z) ® (Z ® Z) 
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Lambda Calculus (Church and Kleene 1930’s)

A unified language to manipulate and reason about functions.

Given
f(x) = x2

lx. x2

represents the same f function, except it is anonymous.

To represent the function evaluation f(2) = 4, 
we use the following l-calculus syntax:

(lx. x2  2)  Þ 22 Þ 4 
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Lambda Calculus Syntax and Semantics

The syntax of a l-calculus expression is as follows:

e ::= v variable
| lv.e functional abstraction
| (e e) function application

The semantics of a l-calculus expression is called beta-reduction:

(lx.E M)  Þ E{M/x}

where we alpha-rename the lambda abstraction E if necessary to 
avoid capturing free variables in M.
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Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent 
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) = x+y 
of type h: Z x Z® Z

We can represent h as h’ of type: h’: Z® Z® Z
Such that

h(x,y) = h’(x)(y) = x+y 
For example, 

h’(2) = g, where g(y) = 2+y 

We say that h’ is the curried version of h.
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Function Composition in Lambda Calculus

S: lx.(s x) (Square)
I: lx.(i x) (Increment)

C: lf.lg.lx.(f (g x)) (Function Composition)

((C S) I)

((lf.lg.lx.(f (g x)) lx.(s x)) lx.(i x))
Þ (lg.lx.(lx.(s x) (g x)) lx.(i x))

Þlx.(lx.(s x) (lx.(i x) x))
Þlx.(lx.(s x) (i x))

Þlx.(s (i x))

Recall semantics rule:

(lx.E M)  Þ E{M/x}
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Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

lx.(lx.(s x) (lx.(i x) x))

There are two possible evaluation orders:

lx.(lx.(s x) (lx.(i x) x))
Þlx.(lx.(s x) (i x))

Þlx.(s (i x))
and:

lx.(lx.(s x) (lx.(i x) x))
Þlx.(s (lx.(i x) x))

Þlx.(s (i x))

Is the final result always the same?

Recall semantics rule:

(lx.E M)  Þ E{M/x}

Applicative 
Order

Normal Order



C. Varela 27

Church-Rosser Theorem
If a lambda calculus expression can be evaluated in two different 
ways and both ways terminate, both ways will yield the same result.

e

e1 e2

e’

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to 
terminate, using normal order will cause termination.
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Order of Evaluation and Termination

Consider:
(lx.y (lx.(x x) lx.(x x)))

There are two possible evaluation orders:

(lx.y (lx.(x x) lx.(x x))) 
Þ (lx.y (lx.(x x) lx.(x x)))

and:
(lx.y (lx.(x x) lx.(x x))) 

Þ y

In this example, normal order terminates whereas applicative order 
does not.

Recall semantics rule:

(lx.E M)  Þ E{M/x}

Applicative 
Order

Normal Order
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Free and Bound Variables

The lambda functional abstraction is the only syntactic construct 
that binds variables.  That is, in an expression of the form:

lv.e

we say that occurrences of variable v in expression e are bound.  All 
other variable occurrences are said to be free.

e.g.,

(lx.ly.(x y) (y w))

Free VariablesBound Variables
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Why a-renaming?

Alpha renaming is used to prevent capturing free occurrences of 
variables when reducing a lambda calculus expression, e.g.,

(lx.ly.(x y) (y w))
Þly.((y w) y)

This reduction erroneously captures the free occurrence of y.

A correct reduction first renames y to z, (or any other fresh variable) 
e.g.,

(lx.ly.(x y) (y w))
Þ (lx.lz.(x z) (y w))

Þlz.((y w) z)

where y remains free.
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Combinators

A lambda calculus expression with no free variables is called a
combinator.  For example:

I: lx.x (Identity)
App: lf.lx.(f x) (Application)
C: lf.lg.lx.(f (g x)) (Composition)
L: (lx.(x x) lx.(x x)) (Loop)
Cur: lf.lx.ly.((f x) y) (Currying)
Seq: lx.ly.(lz.y x) (Sequencing--normal order)
ASeq: lx.ly.(y x) (Sequencing--applicative order)

where y denotes a thunk, i.e., a lambda abstraction 
wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of 
its context.
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Combinators in Functional Programming 
Languages

Functional programming languages have a syntactic form for 
lambda abstractions.  For example, the identity combinator:

lx.x

can be written in Oz as follows:

fun {$ X} X end

in Haskell as follows:       \x -> x
and in Scheme as follows:  (lambda(x) x)
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Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}
fun {$ X} 

fun {$ Y} 
{F X Y}

end
end

end

It takes a function of two arguments, F, and returns its curried 
version, e.g.,

{{{Curry Plus} 2} 3} Þ 5
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Exercises

1. PDCS Exercise 2.11.1 (page 31).
2. PDCS Exercise 2.11.2 (page 31).
3. PDCS Exercise 2.11.5 (page 31).
4. PDCS Exercise 2.11.6 (page 31).
5. Define Compose in Haskell.  Demonstrate the use of 

curried Compose using an example.


