
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Functional Programming:
Lists, Pattern Matching, Recursive Programming
(CTM Sections 1.1-1.7, 3.2, 3.4.1-3.4.2, 4.7.2)

Carlos Varela
RPI

September 14, 2021

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 2

Introduction to Oz
• An introduction to programming concepts
• Declarative variables
• Structured data (example: lists)
• Functions over lists
• Correctness and complexity

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 3

Variables
• Variables are short-cuts for values, they cannot be assigned

more than once
declare
V = 9999*9999
{Browse V*V}

• Variable identifiers: is what you type
• Store variable: is part of the memory system
• The declare statement creates a store variable and assigns

its memory address to the identifier ’V’ in the environment

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 4

Functions
• Compute the factorial function:
• Start with the mathematical definition

declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end

• Fact is declared in the environment
• Try large factorial {Browse {Fact 100}}

nnn ×−×××=)1(21!

0 if)!1(!
1!0

>−×=

=

nnnn

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Factorial in Haskell
factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 6

Composing functions
• Combinations of r items taken from n.
• The number of subsets of size r taken from a set of size n

)!(!
!
rnr

n
r
n

−
="

#

$
%
&

'

declare
fun {Comb N R}

{Fact N} div ({Fact R}*{Fact N-R})
end

• Example of functional abstraction

Comb

Fact Fact Fact

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 7

Structured data (lists)
• Calculate Pascal triangle
• Write a function that calculates the nth row as

one structured value
• A list is a sequence of elements:

[1 4 6 4 1]
• The empty list is written nil
• Lists are created by means of ”|” (cons)

declare
H=1
T = [2 3 4 5]
{Browse H|T} % This will show [1 2 3 4 5]

1
11

1 2 1

1 3 3 1

1 4 6 4 1

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 8

Lists (2)

• Taking lists apart (selecting components)
• A cons has two components: a head, and a tail

declare L = [5 6 7 8]
L.1 gives 5
L.2 give [6 7 8]

‘|’

‘|’

‘|’

6

7

8 nil

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 9

Pattern matching

• Another way to take a list apart is by use of pattern
matching with a case instruction

case L of H|T then {Browse H} {Browse T}
else {Browse ‘empty list’}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 10

Functions over lists

• Compute the function {Pascal N}
• Takes an integer N, and returns the

Nth row of a Pascal triangle as a list
1. For row 1, the result is [1]
2. For row N, shift to left row N-1 and

shift to the right row N-1
3. Align and add the shifted rows

element-wise to get row N

1
11

1 2 1

1 3 3 1

1 4 6 4 1

(0) (0)

[0 1 3 3 1]

[1 3 3 1 0]

Shift right

Shift left

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 11

Functions over lists (2)

declare
fun {Pascal N}

if N==1 then [1]
else

{AddList
{ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}

end
end

AddList

ShiftLeft ShiftRight

Pascal N-1 Pascal N-1

Pascal N

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 12

Functions over lists (3)

fun {ShiftLeft L}
case L of H|T then

H|{ShiftLeft T}
else [0]
end

end

fun {ShiftRight L} 0|L end

fun {AddList L1 L2}
case L1 of H1|T1 then

case L2 of H2|T2 then
H1+H2|{AddList T1 T2}

end
else nil end

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 13

Top-down program development
• Understand how to solve the problem by hand
• Try to solve the task by decomposing it to simpler tasks
• Devise the main function (main task) in terms of suitable

auxiliary functions (subtasks) that simplify the solution
(ShiftLeft, ShiftRight and AddList)

• Complete the solution by writing the auxiliary functions
• Test your program bottom-up: auxiliary functions first.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 14

Is your program correct?
• “A program is correct when it does what we would like it

to do”
• In general we need to reason about the program:
• Semantics for the language: a precise model of the

operations of the programming language
• Program specification: a definition of the output in terms

of the input (usually a mathematical function or relation)
• Use mathematical techniques to reason about the program,

using programming language semantics

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 15

Mathematical induction
• Select one or more inputs to the function
• Show the program is correct for the simple cases (base

cases)
• Show that if the program is correct for a given case, it is

then correct for the next case.
• For natural numbers, the base case is either 0 or 1, and for

any number n the next case is n+1
• For lists, the base case is nil, or a list with one or a few

elements, and for any list T the next case is H|T

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 16

Correctness of factorial

fun {Fact N}
if N==0 then 1 else N*{Fact N-1} end

end

• Base Case N=0: {Fact 0} returns 1
• Inductive Case N>0: {Fact N} returns N*{Fact N-1} assume

{Fact N-1} is correct, from the spec we see that {Fact N} is
N*{Fact N-1}

nn
nFact

×−×××
−

)1(

)1(21

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 17

Complexity
• Pascal runs very slow,

try {Pascal 24}
• {Pascal 20} calls: {Pascal 19} twice,

{Pascal 18} four times, {Pascal 17}
eight times, ..., {Pascal 1} 219 times

• Execution time of a program up to a
constant factor is called the
program’s time complexity.

• Time complexity of {Pascal N} is
proportional to 2N (exponential)

• Programs with exponential time
complexity are impractical

declare
fun {Pascal N}

if N==1 then [1]
else

{AddList
{ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}

end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 18

fun {FastPascal N}
if N==1 then [1]
else

local L in
L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}

end
end

end

Faster Pascal
• Introduce a local variable L
• Compute {FastPascal N-1} only once
• Try with 30 rows.
• FastPascal is called N times, each

time a list on the average of size N/2
is processed

• The time complexity is proportional
to N2 (polynomial)

• Low order polynomial programs are
practical.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Iterative computation
• An iterative computation is one whose execution stack is

bounded by a constant, independent of the length of the
computation

• Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1→ → →...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

The general scheme
fun {Iterate Si}

if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}
{Iterate Si+1}

end
end
• IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

The computation model

• STACK : [R={Iterate S0}]
• STACK : [S1 = {Transform S0},

R={Iterate S1}]

• STACK : [R={Iterate Si}]
• STACK : [Si+1 = {Transform Si},

R={Iterate Si+1}]

• STACK : [R={Iterate Si+1}]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
! = +

= −

! = ! −

! !

! = ! − = + − =

< <

< − < +

g g x g

g x

g x
g

g x g x g x g

g g

i e g g x g g x

(/) /

(/) / /

/ , /

. . ,

2

2 2 2
2 2 2 1

2 2 0

ε

ε

ε ε

ε ε

ε ε ε

ε

For to be a better guess than g: <

i.e.

 < ,

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
• Accurate enough is defined as:

| x – g2 | / x < 0.00001

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

SqrtIter
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then Guess
else

Guess1 = {Improve Guess X} in
{SqrtIter Guess1 X}

end
end
• Compare to the general scheme:

– The state is the pair Guess and X
– IsDone is implemented by the procedure GoodEnough
– Transform is implemented by the procedure Improve

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

The program version 1
fun {Sqrt X}

Guess = 1.0
in {SqrtIter Guess X}
end
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then
Guess

else
{SqrtIter {Improve Guess X} X}

end
end

fun {Improve Guess X}
(Guess + X/Guess)/2.0

end
fun {GoodEnough Guess X}

{Abs X - Guess*Guess}/X < 0.00001
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Using local procedures

• The main procedure Sqrt uses the helper procedures
SqrtIter, GoodEnough, Improve, and Abs

• SqrtIter is only needed inside Sqrt
• GoodEnough and Improve are only needed inside SqrtIter
• Abs (absolute value) is a general utility
• The general idea is that helper procedures should not be

visible globally, but only locally

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Sqrt version 2
local

fun {SqrtIter Guess X}
if {GoodEnough Guess X} then Guess
else {SqrtIter {Improve Guess X} X} end

end
fun {Improve Guess X}

(Guess + X/Guess)/2.0
end
fun {GoodEnough Guess X}

{Abs X - Guess*Guess}/X < 0.000001
end

in
fun {Sqrt X}

Guess = 1.0
in {SqrtIter Guess X} end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local

fun {SqrtIter Guess X}
fun {Improve}

(Guess + X/Guess)/2.0
end
fun {GoodEnough}

{Abs X - Guess*Guess}/X < 0.000001
end

in
if {GoodEnough} then Guess
else {SqrtIter {Improve} X} end

end
in fun {Sqrt X}

Guess = 1.0 in
{SqrtIter Guess X}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local

fun {SqrtIter Guess X}
fun {Improve}

(Guess + X/Guess)/2.0
end
fun {GoodEnough}

{Abs X - Guess*Guess}/X < 0.000001
end

in
if {GoodEnough} then Guess
else {SqrtIter {Improve} X} end

end
in fun {Sqrt X}

Guess = 1.0 in
{SqrtIter Guess X}

end
end

The program has a single
drawback: on each iteration two
procedure values are created, one
for Improve and one for
GoodEnough

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Sqrt final version
fun {Sqrt X}

fun {Improve Guess}
(Guess + X/Guess)/2.0

end
fun {GoodEnough Guess}

{Abs X - Guess*Guess}/X < 0.000001
end
fun {SqrtIter Guess}

if {GoodEnough Guess} then Guess
else {SqrtIter {Improve Guess} } end

end
Guess = 1.0

in {SqrtIter Guess}
end

The final version is
a compromise between
abstraction and efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 31

From a general scheme
to a control abstraction (1)

fun {Iterate Si}
if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}
{Iterate Si+1}

end
end
• IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 32

From a general scheme
to a control abstraction (2)

fun {Iterate S IsDone Transform}
if {IsDone S} then S
else S1 in

S1 = {Transform S}
{Iterate S1 IsDone Transform}

end
end

fun {Iterate Si}
if {IsDone Si} then Si
else Si+1 in

Si+1 = {Transform Si}
{Iterate Si+1}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Sqrt using the Iterate abstraction
fun {Sqrt X}

fun {Improve Guess}
(Guess + X/Guess)/2.0

end
fun {GoodEnough Guess}

{Abs X - Guess*Guess}/X < 0.000001
end
Guess = 1.0

in
{Iterate Guess GoodEnough Improve}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

Sqrt using the control abstraction
fun {Sqrt X}

{Iterate
1.0
fun {$ G} {Abs X - G*G}/X < 0.000001 end
fun {$ G} (G + X/G)/2.0 end

}
end

Iterate could become a linguistic abstraction

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

Sqrt using Iterate in Haskell
iterate' s isDone transform =
if isDone s then s
else let s1 = transform s in

iterate' s1 isDone transform

sqrt' x = iterate' 1.0 goodEnough improve
where goodEnough = \g -> (abs (x - g*g))/x < 0.00001

improve = \g -> (g + x/g)/2.0

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Sqrt in Haskell
sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)

where
goodEnough guess = (abs (x – guess*guess))/x < 0.00001
improve guess = (guess + x/guess)/2.0
sqrtGuesses = 1:(map improve sqrtGuesses)

This sqrt example uses infinite lists enabled by lazy
evaluation, and the map control abstraction.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 37

Exercises
12. Prove the correctness of AddList and ShiftLeft.
13. Prove that the alternative version of Pascal triangle (not

using ShiftLeft) is correct. Make AddList and OpList
commutative.

14. Modify the Pascal function to use local functions for
AddList, ShiftLeft, ShiftRight. Think about the
abstraction and efficiency tradeoffs.

15. CTM Exercise 3.10.2 (page 230)
16. CTM Exercise 3.10.3 (page 230)
17. Develop a control abstraction for iterating over a list of

elements.

