
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Higher-Order Programming:
Closures, procedural abstraction, genericity, instantiation,

embedding. Control abstractions: iterate, map, reduce, fold,
filter (CTM Sections 1.9, 3.6, 4.7)

Carlos Varela
RPI

September 21, 2021

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 2

Higher-order programming
• Assume we want to write another Pascal function which

instead of adding numbers, performs exclusive-or on them
• It calculates for each number whether it is odd or even

(parity)
• Either write a new function each time we need a new

operation, or write one generic function that takes an
operation (another function) as argument

• The ability to pass functions as arguments, or return a
function as a result is called higher-order programming

• Higher-order programming is an aid to build generic
abstractions

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 3

Variations of Pascal
• Compute the parity Pascal triangle

1
11

1 2 1

1 3 3 1
1 4 6 4 1

1
11

1 0 1

1 1 1 1
1 0 0 0 1

fun {Xor X Y} if X==Y then 0 else 1 end end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 4

Higher-order programming
fun {GenericPascal Op N}

if N==1 then [1]
else L in L = {GenericPascal Op N-1}

{OpList Op {ShiftLeft L} {ShiftRight L}}
end

end
fun {OpList Op L1 L2}

case L1 of H1|T1 then
case L2 of H2|T2 then

{Op H1 H2}|{OpList Op T1 T2}
end

end
else nil end

end

fun {Add N1 N2} N1+N2 end
fun {Xor N1 N2}

if N1==N2 then 0 else 1 end
end

fun {Pascal N} {GenericPascal Add N} end
fun {ParityPascal N}

{GenericPascal Xor N}
end

Add and Xor functions
are passed as
arguments.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

The Iterate control abstraction

fun {Iterate S IsDone Transform}
if {IsDone S} then S
else S1 in

S1 = {Transform S}
{Iterate S1 IsDone Transform}

end
end

fun {Iterate Si}
if {IsDone Si} then Si
else Si+1 in

Si+1 = {Transform Si}
{Iterate Si+1}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Sqrt using the control abstraction
fun {Sqrt X}

{Iterate
1.0
fun {$ G} {Abs X - G*G}/X < 0.000001 end
fun {$ G} (G + X/G)/2.0 end

}
end

IsDone and Transform anonymous functions are passed
as arguments.

C. Varela 7

Sqrt using Iterate in Haskell
iterate' s isDone transform =
if isDone s then s
else let s1 = transform s in

iterate' s1 isDone transform

sqrt' x = iterate' 1.0 goodEnough improve
where goodEnough = \g -> (abs (x - g*g))/x < 0.00001

improve = \g -> (g + x/g)/2.0

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Sqrt in Haskell
sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)

where
goodEnough guess = (abs (x – guess*guess))/x < 0.00001
improve guess = (guess + x/guess)/2.0
sqrtGuesses = 1:(map improve sqrtGuesses)

This sqrt example uses infinite lists enabled by lazy
evaluation, and the map control abstraction.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 9

Functions are procedures in Oz

fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end

end

proc {Map Xs F Ys}
case Xs
of nil then Ys = nil
[] X|Xr then Y Yr in

Ys = Y|Yr
{F X Y}
{Map Xr F Yr}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Map in Haskell
map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (h:t) = f h:map' f t

_ means that the argument is not used (read “don’t care”).
map’ is to distinguish it from the Prelude’s map function.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Higher-order programming
• Higher-order programming = the set of programming

techniques that are possible with procedure values
(lexically-scoped closures)

• Basic operations
– Procedural abstraction: creating procedure values with lexical

scoping
– Genericity: procedure values as arguments
– Instantiation: procedure values as return values
– Embedding: procedure values in data structures

• Higher-order programming is the foundation of
component-based programming and object-oriented
programming

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Procedural abstraction

• Procedural abstraction is the ability to convert any
statement into a procedure value
– A procedure value is usually called a closure, or more precisely, a

lexically-scoped closure
– A procedure value is a pair: it combines the procedure code with

the environment where the procedure was created (the contextual
environment)

• Basic scheme:
– Consider any statement <s>
– Convert it into a procedure value: P = proc {$} <s> end
– Executing {P} has exactly the same effect as executing <s>

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Procedural abstraction

fun {AndThen B1 B2}
if {B1} then {B2} else false
end

end

fun {AndThen B1 B2}
if B1 then B2 else false
end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Procedure abstraction

• Any statement can be abstracted to a procedure by selecting a number
of the ’free’ variable identifiers and enclosing the statement into a
procedure with the identifiers as paramenters

• if X >= Y then Z = X else Z = Y end
• Abstracting over all variables

proc {Max X Y Z}
if X >= Y then Z = X else Z = Y end

end
• Abstracting over X and Z

proc {LowerBound X Z}
if X >= Y then Z = X else Z = Y end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Lexical scope
local P Q in

proc {P …} {Q …} end
proc {Q …} {Browse hello} end
local Q in

proc {Q …} {Browse hi} end
{P …}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Procedure values
• Constructing a procedure value in the store is not simple

because a procedure may have external references

local P Q in
P = proc {$ …} {Q …} end
Q = proc {$ …} {Browse hello} end
local Q in

Q = proc {$ …} {Browse hi} end
{P …}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Procedure values (2)

local P Q in
P = proc {$ …} {Q …} end
Q = proc {$ …} {Browse hello} end
local Q in

Q = proc {$ …} {Browse hi} end
{P …}

end
end

x1 (,)

proc {$ …} {Q …} end Q ® x2

x2 (,)

proc {$ …} {Browse hello} end Browse ® x0

P

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Procedure values (3)
• The semantic statement is (proc {áxñ áy1ñ ... áynñ}

ásñ end, E)
• áy1ñ ... áynñ are the (formal) parameters of the

procedure
• Other free identifiers of ásñ are called external

references áz1ñ ... ázkñ
• These are defined by the environment E where

the procedure is declared (lexical scoping)
• The contextual environment of the procedure
CE is E |{áz1ñ ... ázkñ}

• When the procedure is called CE is used to
construct the environment of ásñ

(proc {$ áy1ñ ... áynñ }
ásñ

end ,
CE)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Procedure values (4)

• Procedure values are pairs:
(proc {$ áy1ñ ... áynñ ásñ end , CE)

• They are stored in the store just as
any other value

(proc {$ áy1ñ ... áynñ }
ásñ

end ,
CE)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 20

Procedure application
• The semantic statement is

({ áxñ áy1ñ … áynñ } , E)
• The activation condition E(áxñ) is true:

– If E(áxñ) is not procedure value, or a procedure with
arity that is not equal n, raise an error

– E(áxñ) is (proc {$ áz1ñ ... áznñ} ásñ end, CE) ,
push

(ásñ , CE + {áz1ñ ® E(áy1ñ) … áznñ ® E(áynñ)})
on the stack

• The activation condition E(áxñ) is false: suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

A common limitation
• Most popular imperative languages (C, Pascal) do not have procedure values
• They have only half of the pair: variables can reference procedure code, but there is no

contextual environment
• This means that control abstractions cannot be programmed in these languages

– They provide a predefined set of control abstractions (for, while loops, if statement)

• Generic operations are still possible
– They can often get by with just the procedure code. The contextual environment is often

empty.
• The limitation is due to the way memory is managed in these languages

– Part of the store is put on the stack and deallocated when the stack is deallocated
– This is supposed to make memory management simpler for the programmer on systems that

have no garbage collection
– It means that contextual environments cannot be created, since they would be full of dangling

pointers

• Object-oriented programming languages can use objects to encode procedure
values by making external references (contextual environment) instance
variables.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Genericity
• Replace specific

entities (zero 0 and
addition +) by
function arguments

• The same routine
can do the sum, the
product, the logical
or, etc.

fun {SumList L}
case L
of nil then 0
[] X|L2 then X+{SumList L2}
end

end

fun {FoldR L F U}
case L
of nil then U
[] X|L2 then {F X {FoldR L2 F U}}
end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Genericity in Haskell
• Replace specific

entities (zero 0 and
addition +) by
function arguments

• The same routine
can do the sum, the
product, the logical
or, etc.

sumlist :: (Num a) => [a] -> a
sumlist [] = 0
sumlist (h:t) = h+sumlist t

foldr' :: (a->b->b) -> b -> [a] -> b
foldr' _ u [] = u
foldr' f u (h:t) = f h (foldr' f u t)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

Instantiation

• Instantiation is when a procedure returns a procedure value as its result
• Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically

to SumList, which is an « instance » of a folding function

fun {FoldFactory F U}
fun {FoldR L}

case L
of nil then U
[] X|L2 then {F X {FoldR L2}}
end

end
in

FoldR
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Currying
• Currying is a technique that can simplify programs that

heavily use higher-order programming.
• The idea:function of n arguments Þ n nested functions of

one argument.
• Advantage: The intermediate functions can be useful in

themselves.

fun {Max X Y}
if X>=Y then X else Y end

end

fun {Max X}
fun {$ Y}

if X>=Y then X else Y end
end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Embedding
• Embedding is when procedure values are put in data

structures
• Embedding has many uses:

– Modules: a module is a record that groups together a set of related
operations

– Software components: a software component is a generic function
that takes a set of modules as its arguments and returns a new
module. It can be seen as specifying a module in terms of the
modules it needs.

– Delayed evaluation (also called explicit lazy evaluation): build just
a small part of a data structure, with functions at the extremities
that can be called to build more. The consumer can control
explicitly how much of the data structure is built.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Control Abstractions
declare
proc {For I J P}

if I >= J then skip
else {P I} {For I+1 J P}
end

end

{For 1 10 Browse}

for I in 1..10 do {Browse I} end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Control Abstractions
proc {ForAll Xs P}

case Xs
of nil then skip
[] X|Xr then

{P X} {ForAll Xr P}
end

end

{ForAll [a b c d]
proc{$ I} {System.showInfo "the item is: " # I} end}

for I in [a b c d] do
{System.showInfo "the item is: " # I}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Control Abstractions
fun {FoldL Xs F U}

case Xs
of nil then U
[] X|Xr then {FoldL Xr F {F X U}}
end

end
Assume a list [x1 x2 x3]
S0 ® S1 ® S2
U ® {F x1 U}® {F x2 {F x1 U}} ®®

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Control Abstractions
fun {FoldL Xs F U}

case Xs
of nil then U
[] X|Xr then {FoldL Xr F {F X U}}
end

end

What does this program do ?
{Browse {FoldL [1 2 3]

fun {$ X Y} X|Y end nil}}

C. Varela 31

FoldL in Haskell
foldl' :: (a->b->b) -> b -> [a] -> b
foldl' _ u [] = u
foldl' f u (h:t) = foldl' f (f h u) t

Notice the unit u is of type b, list elements are of type a, and the
function f is of type a->b->b.

C. Varela 32

Two more folding functions
Given a list [e1 e2 ... en] and a binary function ¤, with unit U,

the previous folding functions do the following:

(e1¤...(en-1¤(en¤U))...) fold right
(en¤...(e2¤(e1¤U))...) fold left

But there are two other possibilities:

(...((U¤en)¤en-1)...¤e1) fold right unit left
(...((U¤e1)¤e2)...¤en) fold left unit left

C. Varela 33

FoldL unit left in Haskell
foldlul :: (b->a->b) -> b -> [a] -> b
foldlul _ u [] = u
foldlul f u (h:t) = foldlul f (f u h) t

Notice the unit u is of type b, list elements are of type a, and the
function f is of type b->a->b.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

List-based techniques

fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then

{F X}|{Map Xr F}
end

end

fun {Filter Xs P}
case Xs
of nil then nil
[] X|Xr andthen {P X} then

X|{Filter Xr P}
[] X|Xr then {Filter Xr P}
end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

Filter in Haskell
filter' :: (a-> Bool) -> [a] -> [a]
filter' _ [] = []
filter' p (h:t) = if p h then h:filter' p t

else filter' p t

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Filter as FoldR application

filter'' :: (a-> Bool) -> [a] -> [a]
filter'' p l = foldr

(\h t -> if p h
then h:t
else t) [] l

fun {Filter P L}
{FoldR fun {$ H T}

if {P H} then
H|T

else T end
end nil L}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Tree-based techniques
proc {DFS Tree}

case Tree of tree(node:N sons:Sons …) then
{Browse N}
for T in Sons do {DFS T} end

end
end

proc {VisitNodes Tree P}
case Tree of tree(node:N sons:Sons …) then

{P N}
for T in Sons do {VisitNodes T P} end

end
end

Call {P T} at each node T

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Explicit lazy evaluation
• Supply-driven evaluation. (e.g.The list is completely

calculated independent of whether the elements are needed
or not.)

• Demand-driven execution.(e.g. The consumer of the list
structure asks for new list elements when they are needed.)

• Technique: a programmed trigger.
• How to do it with higher-order programming? The

consumer has a function that it calls when it needs a new
list element. The function call returns a pair: the list
element and a new function. The new function is the new
trigger: calling it returns the next data item and another
new function. And so forth.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 39

Explicit lazy functions
fun lazy {From N}

N | {From N+1}
end

fun {From N}
fun {$} N | {From N+1} end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 40

Exercises
23. Define an IncList function to take a list of numbers and

increment all its values, using the Map control abstraction.
For example:

{IncList [3 1 7]} => [4 2 8]
24. Create a higher-order MapReduce function that takes as

input two functions corresponding to Map and Reduce
respectively, and returns a function to perform the
composition. Illustrate your MapReduce function with an
example.

25. Write solutions for exercises 23 and 24 in both Oz and
Haskell. Compare your solutions.

