
C. Varela 1

Actors (PDCS 4)
AMST actor language syntax, semantics, join

continuations

Carlos Varela
Rennselaer Polytechnic Institute

October 8, 2021

C. Varela 2

Advantages of
concurrent programs

• Reactive programming
– User can interact with applications while tasks are running, e.g., stopping

the transfer of a large file in a web browser.
• Availability of services

– Long-running tasks need not delay short-running ones, e.g., a web server
can serve an entry page while at the same time processing a complex
query.

• Parallelism
– Complex programs can make better use of hardware resources in multi-

core processor architectures, SMPs, LANs, WANs, grids, and clouds, e.g.,
scientific/engineering applications, simulations, games, etc.

• Controllability
– Tasks requiring certain preconditions can suspend and wait until the

preconditions hold, then resume execution transparently.

C. Varela 3

Disadvantages of
concurrent programs

• Safety
– « Nothing bad ever happens »
– Concurrent tasks should not corrupt consistent state of program.

• Liveness
– « Anything ever happens at all »
– Tasks should not suspend and indefinitely wait for each other (deadlock).

• Non-determinism
– Mastering exponential number of interleavings due to different schedules.

• Resource consumption
– Concurrency can be expensive. Overhead of scheduling, context-

switching, and synchronization.
– Concurrent programs can run slower than their sequential counterparts

even with multiple CPUs!

C. Varela 4

Overview of
concurrent programming

• There are four main approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java, C++)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, otherwise use actors and message passing.

C. Varela 5

Actors/SALSA
• Actor Model

– A reasoning framework to model concurrent
computations

– Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Agha, Mason, Smith and Talcott, “A Foundation for Actor
Computation”, J. of Functional Programming, 7, 1-72, 1997.

• SALSA
– Simple Actor Language System and

Architecture
– An actor-oriented language for mobile and

internet computing
– Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

Agha, Mason, Smith & Talcott
1. Extend a functional language (call-by-value λ calculus +

ifs and pairs) with actor primitives.

2. Define an operational semantics for actor configurations.

3. Study various notions of equivalence of actor expressions
and configurations.

4. Assume fairness:
– Guaranteed message delivery.
– Individual actor progress.

C. Varela 6

Open Distributed Systems

• Addition of new components

• Replacement of existing components

• Changes in interconnections

C. Varela 7

Synchronous vs. Asynchronous
Communication

• The π-calculus (and other process algebras such as CCS,
CSP) uses synchronous communication.

• The actor model assumes asynchronous communication is
the most primitive interaction mechanism.

C. Varela 8

Communication Medium
• In the π-calculus, channels are explicitly modeled.

Multiple processes can share a channel, potentially causing
interference.

• In the actor model, the communication medium is not
explicit. Actors (active objects) are first-class, history-
sensitive (stateful) entities with an explicit identity used for
communication.

C. Varela 9

Fairness
• The actor model theory assumes fair computations:

1. Message delivery is guaranteed.
2. Infinitely-often enabled computations must eventually happen.

Fairness is very useful for reasoning about equivalences of
actor programs but can be hard/expensive to guarantee;
in particular when distribution, mobility, and failures are
considered.

C. Varela 10

λ-Calculus as a Model for
Sequential Computation

Syntax:
e ::= v variable

| λv.e function
| e(e) application

Example of beta-reduction:

λx.x2(3)
x2{3/x}

C. Varela 11

λx.x2 3

32

λ-Calculus extended with pairs

• pr(x,y) returns a pair containing x & y

• ispr(x) returns t if x is a pair; f otherwise

• 1st(pr(x,y)) = x returns the first value of a pair

• 2nd(pr(x,y)) = y returns the 2nd value of a pair

C. Varela 12

Actor Primitives

• send(a,v)
– Sends value v to actor a.

• new(b)
– Creates a new actor with behavior b (a λ-calculus functional

abstraction) and returns the identity/name of the newly created
actor.

• ready(b)
– Becomes ready to receive a new message with behavior b.

C. Varela 13

AMST Actor Language
Examples

b5 = rec(λy.λx.seq(send(x,5),ready(y)))
receives an actor name x and sends the number 5 to that actor, then it

becomes ready to process new messages with the same behavior y
(b5).

Sample usage:
send(new(b5), a)

A sink, an actor that disregards all messages:
sink = rec(λb.λm.ready(b))

C. Varela 14

Reference Cell
cell =

rec(λb.λc.λm.if(get?(m),

seq(send(cust(m),c),

ready(b(c))),

if(set?(m),

ready(b(contents(m))),

ready(b(c)))))

Using the cell:
let a = new(cell(0)) in seq(send(a,mkset(7)),

send(a,mkset(2)),

send(a,mkget(c)))

C. Varela 15

Join Continuations
Consider:

treeprod = rec(λf.λtree.

if(isnat(tree),

tree,

f(left(tree))*f(right(tree))))

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.

C. Varela 16

Tree Product Behavior
Btreeprod =

rec(λb.λm.

seq(if(isnat(tree(m)),

send(cust(m),tree(m)),

let newcust=new(Bjoincont(cust(m))),

lp = new(Btreeprod),

rp = new(Btreeprod) in

seq(send(lp,

pr(left(tree(m)),newcust)),

send(rp,

pr(right(tree(m)),newcust)))),

ready(b)))

C. Varela 17

Tree Product (continued)

Bjoincont =

λcust.λfirstnum.ready(λnum.

seq(send(cust,firstnum*num),

ready(sink)))

C. Varela 18

Sample Execution

C. Varela 19

cust

f(tree,cust)

JC JC

cust cust JC

(a) (b)

f(left(tree),JC) f(right(tree),JC)

Sample Execution

C. Varela 20

cust

JC’ JC’

JC

cust JC

firstnum

(c)

JC'

JC

firstnum

firstnum

JC'

cust cust
firstnum

JC

(d)

JC’

f(left(tree),JC)

Sample Execution

C. Varela 21

num

cust

firstnum

cust

JC

(e)

firstnum * num

cust

(f)

Operational Semantics of
AMST Actor Language

• Operational semantics of actor language as a labeled
transition relationship between actor configurations:

[label]
k1 k2

• Actor configurations model open system components:

– Set of individually named actors
– Messages “en-route”

C. Varela 22

Actor Configurations

k = α || µ

α is a function mapping actor names (represented as free
variables) to actor states.

µ is a multi-set of messages “en-route.”

C. Varela 23

Syntactic restrictions on
configurations

Given A = Dom(α):

• If a in A, then fv(α(a)) is a subset of A.

• If <a <= v> in µ, then {a} U fv(v) is a subset of A.

C. Varela 24

Reduction contexts and redexes
Consider the expression:
e = send(new(b5),a)

• The redex r represents the next sub-expression to evaluate
in a left-first call-by-value evaluation strategy.

• The reduction context R (or continuation) is represented as
the surrounding expression with a hole replacing the redex.

send(new(b5),a) = send(☐,a) new(b5)
e = R r where

R = send(☐,a)
r = new(b5)

C. Varela 25

Labeled Transition Relation

C. Varela 26

Exercises
37. Write get?

cust
set?
contents
mkset
mkget

to complete the reference cell example in the AMST actor
language.

38. Modify the cell behavior to notify a customer when the
cell value has been updated.

39. PDCS Exercise 4.6.6 (page 77).
40. PDCS Exercise 4.6.7 (page 78).

C. Varela 27

