Actors (PDCS 4)

AMST actor language syntax, semantics, join
continuations

Carlos Varela
Rennselaer Polytechnic Institute

October 8, 2021

C. Varela

Advantages of
concurrent programs

Reactive programming

— User can interact with applications while tasks are running, e.g., stopping
the transfer of a large file in a web browser.
Availability of services

— Long-running tasks need not delay short-running ones, e.g., a web server
can serve an entry page while at the same time processing a complex

query.
Parallelism

— Complex programs can make better use of hardware resources in multi-
core processor architectures, SMPs, LANs, WANSs, grids, and clouds, e.g.,
scientific/engineering applications, simulations, games, etc.

Controllability

— Tasks requiring certain preconditions can suspend and wait until the
preconditions hold, then resume execution transparently.

C. Varela 2

Disadvantages of
concurrent programs

Safety

— « Nothing bad ever happens »

— Concurrent tasks should not corrupt consistent state of program.
Liveness

— « Anything ever happens at all »

— Tasks should not suspend and indefinitely wait for each other (deadlock).
Non-determinism

— Mastering exponential number of interleavings due to different schedules.

Resource consumption

— Concurrency can be expensive. Overhead of scheduling, context-
switching, and synchronization.

— Concurrent programs can run slower than their sequential counterparts
even with multiple CPUs!

C. Varela

Overview of
concurrent programming

e There are four main approaches:
— Sequential programming (no concurrency)
— Declarative concurrency (streams in a functional language)
— Message passing with active objects (Erlang, SALSA)

— Atomic actions on shared state (Java, C++)

* The atomic action approach 1s the most difficult, yet 1t 1s
the one you will probably be most exposed to!

« But, if you have the choice, which approach to use?

— Use the simplest approach that does the job: sequential if that is ok,
else declarative concurrency if there is no observable
nondeterminism, otherwise use actors and message passing.

C. Varela 4

Actors/SALSA

« Actor Model

— A reasoning framework to model concurrent
computations

— Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Agha, Mason, Smith and Talcott, “A Foundation for Actor
Computation”, J. of Functional Programming, 7, 1-72, 1997.

« SALSA

— Simple Actor Language System and
Architecture

— An actor-oriented language for mobile and
internet computing

— Programming abstractions for internet-based
concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

C. Varela

Actor

Thread

——————————————

Internal variables

1l

Mailbox

Agha, Mason, Smith & Talcott

Extend a functional language (call-by-value A calculus +
ifs and pairs) with actor primitives.

Define an operational semantics for actor configurations.

Study various notions of equivalence of actor expressions
and configurations.

Assume fairness:

— QGuaranteed message delivery.

— Individual actor progress.

C. Varela

Open Distributed Systems

e Addition of new components
« Replacement of existing components

* Changes 1n interconnections

C. Varela

Synchronous vs. Asynchronous
Communication

» The n-calculus (and other process algebras such as CCS,
CSP) uses synchronous communication.

* The actor model assumes asynchronous communication 1s
the most primitive interaction mechanism.

C. Varela

Communication Medium

 In the n-calculus, channels are explicitly modeled.

Multiple processes can share a channel, potentially causing
interference.

e In the actor model, the communication medium 1s not
explicit. Actors (active objects) are first-class, history-
sensitive (stateful) entities with an explicit identity used for
communication.

C. Varela 9

Fairness

* The actor model theory assumes fair computations:

1. Message delivery is guaranteed.
2. Infinitely-often enabled computations must eventually happen.

Fairness 1s very useful for reasoning about equivalences of
actor programs but can be hard/expensive to guarantee;
in particular when distribution, mobility, and failures are
considered.

C. Varela 10

A-Calculus as a Model for
Sequential Computation

Syntax:
e 2=V variable
| Av.e function
| e(e) application

Example of beta-reduction:

==

AX .x%(3) 1
—> x%{3/x}

C. Varela 11

A-Calculus extended with pairs

pPr(x,y)
1spr(x)
155 (pr(x,y))

2°(pr(x,Y))

returns a pair containing x & y

returns t if x is a pair, f otherwise

= X

- Y

returns the first value of a pair

returns the 2" value of a pair

C. Varela

12

Actor Primitives

e send(a,vVv)

— Sends value v to actor a.

* new(b)

— Creates a new actor with behavior b (a A-calculus functional
abstraction) and returns the identity/name of the newly created
actor.

e ready(b)

— Becomes ready to receive a new message with behavior b.

C. Varela

13

AMST Actor Language
Examples

b5

receives an actor name x and sends the number 5 to that actor, then it
becomes ready to process new messages with the same behavior y

(b5).

rec(Ay.Ax.seq(send(x,5),ready(y)))

Sample usage:
send(new(b5), a)

A sink, an actor that disregards all messages:
sink = rec(Ab.Am.ready (b))

C. Varela 14

Reference Cell

cell =
rec(Ab.Ac.Am.1f (get?(m),
seq(send(cust(m),c),
ready (b (c))),
1f (set?(m),

)
b
b

ready (b (contents (m))),
ready (b (c)))))

Using the cell:

let a = new(cell(0)) in seqg(send(a,mkset (7)),

send (a, mkset (2)),
send (a, mkget (c)))

C. Varela

15

Join Continuations

Consider:

treeprod = rec (Af.Atree.
1f (1snat (tree),
Lree,
f(left(tree))*f(right(tree))))

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.

C. Varela 16

Tree Product Behavior

Btreeprod
rec (Ab.Am.

seq(1f (1snat (tree(m)),

send (cust (m), tree(m)),

let newcust=new (Bjgincont (Cust(m))),
lp = new (Btreeprod) ’
r'o = new (Btreeprod) in

seq(send (lp,
pr(left(tree(m)),newcust)),
send (rp,
pr(right (tree(m)),newcust)))),
ready (b)))

C. Varela

17

B

Tree Product (continued)

joincont

Acust.Afirstnum.ready (Anum.
seq(send(cust, firstnum*num),

ready (sink)))

C. Varela

18

Sample Execution

f(tree,cust) f(left(tree),JC) f(right(tree),JC)

@0s

JC
e

<>

(a)

(b)

C. Varela 19

Sample Execution

f(left(tree),JC) !
1 ammmmmm——— -
E /””’ N\\\
~
! e ™
E / / firstnum / N
1 1 1
1
I \ /
I \\ ,I
i “ 4
: \s\~ ’
| SSeae. e -~
: ________
i JC
1
]
i firstnum
i
1
1
1
1
]
i
]
(c) ! (d)
i
!

C. Varela 20

Sample Execution

[|
JC

i / firstnum * num /
cust i .:
firstnum E ."

(e) i ()

C. Varela 21

Operational Semantics of
AMST Actor Language

« Operational semantics of actor language as a labeled
transition relationship between actor configurations:

[label]
ki, —— Kk,

* Actor configurations model open system components:

— Set of individually named actors

— Messages “en-route”

C. Varela

22

Actor Configurations

k= ollu

o 1s a function mapping actor names (represented as free
variables) to actor states.

u is a multi-set of messages “en-route.”

C. Varela

23

Syntactic restrictions on
configurations

Given A = Dom(a):
 IfainA, then fv(a(a)) 1s a subset of A.

e If <a<=v>1inpu,then{a} U fv(v)1is a subset of A.

C. Varela

24

Reduction contexts and redexes

Consider the expression:

e=

send(new(b5),a)

* The redex r represents the next sub-expression to evaluate
in a left-first call-by-value evaluation strategy.

* The reduction context R (or continuation) 1s represented as
the surrounding expression with a /ole replacing the redex.

send(new(b5),a) = send(Ll,a)pnew(b5) «

e

Rp-r'«

R

r

where

send(Ll,a)
new(b5)

C. Varela 25

[Labeled Transition Relation

K e — € \

(fun:a]

aa[R>e‘]a ”# o a,[RPe'{]a “#

[new:a,a’]

a,[R» new(b) 4|, || p = a,[R» o 4., [ready(b)le || p
a’ fresh

a,[R » send(a’,v) €|, || p i a,R» nil 4], || pW{(a' < v)}

@R ready() < || {a=v)}up reth o b)) | g E

C. Varela

Exercises

37. Write get?

cust
set?
contents
mkset
mkget

to complete the reference cell example in the AMST actor
language.

38. Modify the cell behavior to notify a customer when the
cell value has been updated.

39. PDCS Exercise 4.6.6 (page 77).

40. PDCS Exercise 4.6.7 (page 78).

C. Varela 27

