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Advantages of 
concurrent programs

• Reactive programming
– User can interact with applications while tasks are running, e.g., stopping

the transfer of a large file in a web browser.
• Availability of services

– Long-running tasks need not delay short-running ones, e.g., a web server 
can serve an entry page while at the same time processing a complex
query.

• Parallelism
– Complex programs can make better use of hardware resources in multi-

core processor architectures, SMPs, LANs, WANs, grids, and clouds, e.g., 
scientific/engineering applications, simulations, games, etc.

• Controllability
– Tasks requiring certain preconditions can suspend and wait until the 

preconditions hold, then resume execution transparently.



C. Varela 3

Disadvantages of 
concurrent programs

• Safety
– « Nothing bad ever happens »
– Concurrent tasks should not corrupt consistent state of program.

• Liveness
– « Anything ever happens at all »
– Tasks should not suspend and indefinitely wait for each other (deadlock).

• Non-determinism
– Mastering exponential number of interleavings due to different schedules.

• Resource consumption
– Concurrency can be expensive.  Overhead of scheduling, context-

switching, and synchronization.
– Concurrent programs can run slower than their sequential counterparts

even with multiple CPUs!
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Overview of 
concurrent programming

• There are four main approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java, C++)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, otherwise use actors and message passing.
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Actors/SALSA
• Actor Model 

– A reasoning framework to model concurrent 
computations 

– Programming abstractions for distributed open 
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed 
Systems. MIT Press, 1986.

Agha, Mason, Smith and Talcott, “A Foundation for Actor 
Computation”, J. of Functional Programming, 7, 1-72, 1997.

• SALSA
– Simple Actor Language System and 

Architecture
– An actor-oriented language for mobile and 

internet computing
– Programming abstractions for internet-based 

concurrency, distribution, mobility, and 
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable 
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA 
2001, 36(12), pp 20-34.



Agha, Mason, Smith & Talcott
1. Extend a functional language (call-by-value λ calculus + 

ifs and pairs) with actor primitives.

2. Define an operational semantics for actor configurations.

3. Study various notions of equivalence of actor expressions 
and configurations.

4. Assume fairness:
– Guaranteed message delivery.
– Individual actor progress.
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Open Distributed Systems

• Addition of new components

• Replacement of existing components

• Changes in interconnections
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Synchronous vs. Asynchronous
Communication

• The π-calculus (and other process algebras such as CCS, 
CSP) uses synchronous communication.

• The actor model assumes asynchronous communication is 
the most primitive interaction mechanism.
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Communication Medium
• In the π-calculus, channels are explicitly modeled.

Multiple processes can share a channel, potentially causing 
interference.

• In the actor model, the communication medium is not 
explicit.  Actors (active objects) are first-class, history-
sensitive (stateful) entities with an explicit identity used for 
communication.
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Fairness
• The actor model theory assumes fair computations:

1. Message delivery is guaranteed.
2. Infinitely-often enabled computations must eventually happen.

Fairness is very useful for reasoning about equivalences of 
actor programs but can be hard/expensive to guarantee;  
in particular when distribution, mobility, and failures are 
considered.
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λ-Calculus as a Model for 
Sequential Computation

Syntax:
e    ::= v variable

| λv.e function
| e(e) application

Example of beta-reduction:

λx.x2(3)
x2{3/x}
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λx.x2 3
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λ-Calculus extended with pairs

• pr(x,y) returns a pair containing x & y

• ispr(x) returns t if x is a pair; f otherwise

• 1st(pr(x,y)) = x returns the first value of a pair

• 2nd(pr(x,y)) = y returns the 2nd value of a pair
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Actor Primitives

• send(a,v)
– Sends value v to actor a.

• new(b)
– Creates a new actor with behavior b (a λ-calculus functional 

abstraction) and returns the identity/name of the newly created 
actor.

• ready(b)
– Becomes ready to receive a new message with behavior b.
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AMST Actor Language 
Examples

b5 = rec(λy.λx.seq(send(x,5),ready(y)))
receives an actor name x and sends the number 5 to that actor, then it 

becomes ready to process new messages with the same behavior y 
(b5).

Sample usage:
send(new(b5), a)

A sink, an actor that disregards all messages:
sink = rec(λb.λm.ready(b))
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Reference Cell
cell = 

rec(λb.λc.λm.if(get?(m),

seq(send(cust(m),c),

ready(b(c))),

if(set?(m),

ready(b(contents(m))),

ready(b(c)))))

Using the cell:
let a = new(cell(0)) in seq(send(a,mkset(7)),

send(a,mkset(2)),

send(a,mkget(c)))
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Join Continuations
Consider:

treeprod = rec(λf.λtree.

if(isnat(tree),

tree,

f(left(tree))*f(right(tree))))

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.
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Tree Product Behavior
Btreeprod =

rec(λb.λm.

seq(if(isnat(tree(m)),

send(cust(m),tree(m)),

let newcust=new(Bjoincont(cust(m))),

lp = new(Btreeprod),

rp = new(Btreeprod) in

seq(send(lp,

pr(left(tree(m)),newcust)),

send(rp,

pr(right(tree(m)),newcust)))),

ready(b)))

C. Varela 17



Tree Product (continued)

Bjoincont =

λcust.λfirstnum.ready(λnum.

seq(send(cust,firstnum*num),

ready(sink)))
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Sample Execution
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cust

f(tree,cust)

JC JC

cust cust JC

(a) (b)

f(left(tree),JC) f(right(tree),JC)



Sample Execution
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cust

JC’ JC’

JC

cust JC

firstnum

(c)

JC'

JC

firstnum

firstnum

JC'

cust cust
firstnum

JC

(d)

JC’

f(left(tree),JC)



Sample Execution
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Operational Semantics of
AMST Actor Language

• Operational semantics of actor language as a labeled 
transition relationship between actor configurations:

[label]
k1 k2

• Actor configurations model open system components:

– Set of individually named actors
– Messages “en-route”
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Actor Configurations

k =  α || µ 

α is a function mapping actor names (represented as free 
variables) to actor states.

µ is a multi-set of messages “en-route.”
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Syntactic restrictions on 
configurations

Given A = Dom(α):

• If a in A, then fv(α(a)) is a subset of A.

• If  <a <= v> in µ, then {a} U fv(v) is a subset of A.
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Reduction contexts and redexes
Consider the expression:
e = send(new(b5),a)

• The redex r represents the next sub-expression to evaluate 
in a left-first call-by-value evaluation strategy.

• The reduction context R (or continuation) is represented as 
the surrounding expression with a hole replacing the redex.

send(new(b5),a) = send(☐,a) new(b5)
e = R  r where

R = send(☐,a)
r = new(b5)
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Labeled Transition Relation
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Exercises
37. Write get?

cust
set?
contents
mkset
mkget

to complete the reference cell example in the AMST actor 
language.

38. Modify the cell behavior to notify a customer when the 
cell value has been updated.

39. PDCS Exercise 4.6.6 (page 77).
40. PDCS Exercise 4.6.7 (page 78).
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