
C. Varela; Adapted with permission from S. Haridi and P. Van Roy 1

Declarative Concurrency (CTM 4)

Carlos Varela
Rensselaer Polytechnic Institute

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

October 29, 2021

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 2

Review of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language, Oz)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

S. Haridi and P. Van Roy 3

Concurrency
• How to do several things at once
• Concurrency: running several activities

each running at its own pace
• A thread is an executing sequential

program
• A program can have multiple threads by

using the thread instruction
• {Browse 99*99} can immediately respond

while Pascal is computing

thread
P in
P = {Pascal 21}
{Browse P}

end
{Browse 99*99}

S. Haridi and P. Van Roy 4

State
• How to make a function learn from its past?
• We would like to add memory to a function to

remember past results
• Adding memory as well as concurrency is an

essential aspect of modeling the real world
• Consider {FastPascal N}: we would like it to

remember the previous rows it calculated in
order to avoid recalculating them

• We need a concept (memory cell) to store,
change and retrieve a value

• The simplest concept is a (memory) cell which
is a container of a value

• One can create a cell, assign a value to a cell,
and access the current value of the cell

• Cells are not variables

declare
C = {NewCell 0}
{Assign C {Access C}+1}
{Browse {Access C}}

S. Haridi and P. Van Roy 5

Nondeterminism
• What happens if a program has both concurrency and state

together?
• This is very tricky
• The same program can give different results from one

execution to the next
• This variability is called nondeterminism
• Internal nondeterminism is not a problem if it is not

observable from outside

S. Haridi and P. Van Roy 6

Nondeterminism (2)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 1}
cell C contains 1

{Assign C 2}
cell C contains 2 (final value)

t0

t1

t2

S. Haridi and P. Van Roy 7

Nondeterminism (3)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 2}
cell C contains 2

{Assign C 1}
cell C contains 1 (final value)

t0

t1

t2

S. Haridi and P. Van Roy 8

Nondeterminism (4)
declare
C = {NewCell 0}

thread I in
I = {Access C}
{Assign C I+1}

end
thread J in

J = {Access C}
{Assign C J+1}

end

• What are the possible results?
• Both threads increment the cell

C by 1
• Expected final result of C is 2
• Is that all?

S. Haridi and P. Van Roy 9

Nondeterminism (5)
• Another possible final result is the cell

C containing the value 1

declare
C = {NewCell 0}
thread I in

I = {Access C}
{Assign C I+1}

end
thread J in

J = {Access C}
{Assign C J+1}

end
time

C = {NewCell 0}

I = {Access C}
I equal 0

t0

t1

t2 J = {Access C}
J equal 0
{Assign C J+1}
C contains 1

{Assign C I+1}
C contains 1

t3

t4

S. Haridi and P. Van Roy 10

Lessons learned

• Combining concurrency and state is tricky
• Complex programs have many possible interleavings
• Programming is a question of mastering the interleavings
• Famous bugs in the history of computer technology are due to

designers overlooking an interleaving (e.g., the Therac-25 radiation
therapy machine giving doses thousands of times too high, resulting
in death or injury)

1. If possible try to avoid concurrency and state together
2. Encapsulate state and communicate between threads using dataflow
3. Try to master interleavings by using atomic operations

S. Haridi and P. Van Roy 11

Atomicity
• How can we master the interleavings?
• One idea is to reduce the number of interleavings by

programming with coarse-grained atomic operations
• An operation is atomic if it is performed as a whole or

nothing
• No intermediate (partial) results can be observed by any

other concurrent activity
• In simple cases we can use a lock to ensure atomicity of a

sequence of operations
• For this we need a new entity (a lock)

S. Haridi and P. Van Roy 12

Atomicity (2)
declare
L = {NewLock}

lock L then
sequence of ops 1

end

Thread 1
lock L then

sequence of ops 2

end

Thread 2

S. Haridi and P. Van Roy 13

The program
declare
C = {NewCell 0}
L = {NewLock}

thread
lock L then I in

I = {Access C}
{Assign C I+1}

end
end
thread

lock L then J in
J = {Access C}
{Assign C J+1}

end
end

The final result of C is
always 2

Locks and Deadlock:
Dining Philosophers

C. Varela 14

Ph3

Ph0

Ph2

Ph1

ch0

ch1

ch2

ch3

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 15

Review of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language, Oz)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 16

Declarative Concurrency
• This lecture is about declarative concurrency, programs

with no observable nondeterminism, the result is a function
• Independent procedures that execute on their pace and may

communicate through shared dataflow variables

S. Haridi and P. Van Roy 17

Single-assignment Variables
• Variables are short-cuts for values, they cannot be assigned

more than once
declare
V = 9999*9999
{Browse V*V}

• Variable identifiers: is what you type
• Store variable: is part of the memory system
• The declare statement creates a store variable and assigns

its memory address to the identifier ’V’ in the environment

S. Haridi and P. Van Roy 18

Dataflow

• What happens when multiple threads try to
communicate?

• A simple way is to make communicating
threads synchronize on the availability of data
(data-driven execution)

• If an operation tries to use a variable that is not
yet bound it will wait

• The variable is called a dataflow variable

+

* *

X Y Z U

S. Haridi and P. Van Roy 19

Dataflow (II)

• Two important properties of dataflow
– Calculations work correctly independent

of how they are partitioned between
threads (concurrent activities)

– Calculations are patient, they do not
signal error; they wait for data
availability

• The dataflow property of variables
makes sense when programs are
composed of multiple threads

declare X
thread

{Delay 5000} X=99
end
{Browse ‘Start’} {Browse X*X}

declare X
thread

{Browse ‘Start’} {Browse X*X}
end
{Delay 5000} X=99

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 20

The concurrent model

w = a
z = person(age: y)
x
y = 42
u

Single-assignment
store

Semantic
Stack 1

Semantic
Stack N

Multiple semantic
stacks (threads)

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 21

Concurrent declarative model

ásñ ::= skip empty statement
| áxñ = áyñ variable-variable binding
| áxñ = ávñ variable-value binding
| ás1ñ ás2ñ sequential composition
| local áxñ in ás1ñ end declaration
| proc {áxñ áy1ñ … áynñ } ás1ñ end procedure introduction
| if áxñ then ás1ñ else ás2ñ end conditional
| { áxñ áy1ñ … áynñ } procedure application
| case áxñ of ápatternñ then ás1ñ else ás2ñ end pattern matching
| thread ás1ñ end thread creation

The following defines the syntax of a statement, ásñ denotes a statement

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 22

The concurrent model

Single-assignment
store

ST
thread ás1ñ end,ETop of Stack, Thread i

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 23

The concurrent model

Single-assignment
store

STTop of Stack, Thread i ás1ñ,E

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 24

Basic concepts
• The model allows multiple statements to execute ”at the

same time”
• Imagine that these threads really execute in parallel, each

has its own processor, but share the same memory
• Reading and writing different variables can be done

simultaneously by different threads, as well as reading the
same variable

• Writing the same variable is done sequentially
• The above view is in fact equivalent to an interleaving

execution: a totally ordered sequence of computation steps,
where threads take turns doing one or more steps in
sequence

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 25

Nondeterminism
• An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
• Nondeterminism appears naturally when there is

concurrent access to shared state

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 26

Example of nondeterminism

time

Thread 1

x = 1
x
y = 5

store

time

Thread 2

x = 3

The thread that binds x first will continue,
the other thread will raise an exception

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 27

Nondeterminism
• An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
• Nondeterminism appears naturally when there is

concurrent access to shared state
• In the concurrent declarative model when there is only one

binder for each dataflow variable or multiple compatible
bindings (e.g., to partial values), the nondeterminism is not
observable on the store (i.e., the store develops to the same
final results)

• This means for correctness we can ignore the concurrency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 28

Scheduling
• The choice of which thread to execute next and for how

long is done by a part of the system called the scheduler
• A thread is runnable if its next statement to execute is not

blocked on a dataflow variable, otherwise the thread is
suspended

• A scheduler is fair if it does not starve a runnable thread,
i.e., all runnable threads eventually execute

• Fair scheduling makes it easy to reason about programs
and program composition

• Otherwise, some correct program (in isolation) may never
get processing time when composed with other programs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 29

Example of runnable threads
proc {Loop P N}

if N > 0 then
{P} {Loop P N-1}

else skip end
end
thread {Loop

proc {$} {Show 1} end
1000}

end
thread {Loop

proc {$} {Show 2} end
1000}

end

• This program will
interleave the execution
of two threads, one
printing 1, and the other
printing 2

• We assume a fair
scheduler

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 30

Dataflow computation
• Threads suspend on data unavailability in

dataflow variables
• The {Delay X} primitive makes the thread

suspends for X milliseconds, after that, the
thread is runnable

declare X
{Browse X}
local Y in

thread {Delay 1000} Y = 10*10 end
X = Y + 100*100

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 31

Illustrating dataflow computation

• Enter incrementally the
values of X0 to X3

• When X0 is bound the
thread will compute
Y0=X0+1, and will
suspend again until X1 is
bound

declare X0 X1 X2 X3
{Browse [X0 X1 X2 X3]}
thread

Y0 Y1 Y2 Y3
in

{Browse [Y0 Y1 Y2 Y3]}
Y0 = X0 + 1
Y1 = X1 + Y0
Y2 = X2 + Y1
Y3 = X3 + Y2
{Browse completed}

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 32

Concurrent Map
fun {Map Xs F}

case Xs
of nil then nil
[] X|Xr then
thread {F X} end|{Map Xr F}

end
end

• This will fork a thread for each
individual element in the input
list

• Each thread will run only if
both the element X and the
procedure F is known

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 33

Concurrent Map Function
fun {Map Xs F}

case Xs
of nil then nil
[] X|Xr then thread {F X} end |{Map Xr F}
end

end
• What this looks like in the kernel language:
proc {Map Xs F Rs}

case Xs
of nil then Rs = nil
[] X|Xr then R Rr in

Rs = R|Rr
thread {F X R} end
{Map Xr F Rr}

end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 34

How does it work?
• If we enter the following statements:

declare F X Y Z
{Browse thread {Map X F} end}

• A thread executing Map is created.
• It will suspend immediately in the case-statement because

X is unbound.
• If we thereafter enter the following statements:

X = 1|2|Y
fun {F X} X*X end

• The main thread will traverse the list creating two threads
for the first two arguments of the list

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 35

How does it work?

• The main thread will traverse the list creating two threads
for the first two arguments of the list:
thread {F 1} end, and thread {F 2} end,

After entering:
Y = 3|Z
Z = nil
the program will complete the computation of the main
thread and the newly created thread thread {F 3} end,
resulting in the final list [1 4 9].

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 36

Simple concurrency with
dataflow

• Declarative programs can be
easily made concurrent

• Just use the thread statement
where concurrency is needed

fun {Fib X}
if X=<2 then 1
else

thread {Fib X-1} end + {Fib X-2}
end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 37

Understanding why
fun {Fib X}

if X=<2 then 1
else F1 F2 in

F1 = thread {Fib X-1} end
F2 = {Fib X-2}

F1 + F2
end

end

Dataflow dependency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 38

Execution of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Fork a thread

Synchronize on
result

Running thread

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 39

Streams
• A stream is a sequence of messages
• A stream is a First-In First-Out (FIFO) channel
• The producer augments the stream with new messages, and

the consumer reads the messages, one by one.

x5 x4 x3 x2 x1
producer consumer

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 40

Stream Communication I

• The data-flow property of Oz easily enables writing
threads that communicate through streams in a producer-
consumer pattern.

• A stream is a list that is created incrementally by one
thread (the producer) and subsequently consumed by one
or more threads (the consumers).

• The consumers consume the same elements of the stream.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 41

Stream Communication II
• Producer, produces incrementally the elements
• Transducer(s), transform(s) the elements of the stream
• Consumer, accumulates the results

producer transducer transducer consumer

thread 1 thread 2 thread 3 thread N

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 42

Stream communication patterns
• The producer, transducers, and the consumer can, in

general, be described by certain program patterns
• We show various patterns

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 43

Producer
fun {Producer State}

if {More State} then
X = {Produce State} in
X | {Producer {Transform State}}

else nil end
end
• The definition of More, Produce, and Transform is

problem dependent
• State could be multiple arguments
• The above definition is not a complete program!

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 44

Example Producer
fun {Generate N Limit}

if N=<Limit then
N | {Generate N+1 Limit}

else nil end
end

• The State is the two arguments N and Limit
• The predicate More is the condition N=<Limit
• The Produce function is the identity function on N
• The Transform function (N,Limit) Þ (N+1,Limit)

fun {Producer State}
if {More State} then

X = {Produce State} in
X | {Producer {Transform State}}

else nil end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 45

Consumer Pattern
fun {Consumer State InStream}

case InStream
of nil then {Final State}
[] X | RestInStream then

NextState = {Consume X State} in
{Consumer NextState RestInStream}

end
end
• Final and Consume are problem dependent

The consumer suspends until
InStream is either a cons or a nil

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 46

Example Consumer

fun {Sum A Xs}
case Xs
of nil then A
[] X|Xr then {Sum A+X Xr}
end

end
• The State is A
• Final is just the identity function on State
• Consume takes X and State Þ X + State

fun {Consumer State InStream}
case InStream
of nil then {Final State}
[] X | RestInStream then

NextState = {Consume X State} in
{Consumer NextState RestInStream}

end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 47

Transducer Pattern 1

fun {Transducer State InStream}
case InStream
of nil then nil
[] X | RestInStream then

NextState#TX = {Transform X State}
TX | {Transducer NextState RestInStream}

end
end
• A transducer keeps its state in State, receives messages on

InStream and sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 48

Transducer Pattern 2

fun {Transducer State InStream}
case InStream
of nil then nil
[] X | RestInStream then

if {Test X#State} then
NextState#TX = {Transform X State}
TX | {Transducer NextState RestInStream}

else {Transducer State RestInStream} end
end

end
• A transducer keeps its state in State, receives messages on InStream and

sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 49

Example Transducer

fun {Filter Xs F}
case Xs
of nil then nil
[] X|Xr then

if {F X} then X|{Filter Xr F}
else {Filter Xr F} end

end
end

Generate Filter

IsOdd

6 5 4 3 2 1 5 3 1

Filter is a transducer that
takes an Instream and incremently
produces an Outstream that satisfies
the predicate F

local Xs Ys in
thread Xs = {Generate 1 100} end
thread Ys = {Filter Xs IsOdd} end
thread {Browse Ys} end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 50

Larger example:
The sieve of Eratosthenes

• Produces prime numbers
• It takes a stream 2...N, peals off 2 from the rest of the stream
• Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys Zs

X|Zs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 51

Sieve
fun {Sieve Xs}

case Xs
of nil then nil
[] X|Xr then Ys in

thread Ys = {Filter Xr fun {$ Y} Y mod X \= 0 end} end
X | {Sieve Ys}

end
end
• The program forks a filter thread on each sieve call

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 52

Example call
local Xs Ys in

thread Xs = {Generate 2 100000} end
thread Ys = {Sieve Xs} end
thread for Y in Ys do {Show Y} end end

end

Filter 3 SieveFilter 2 Filter 5

7 | 11 |...

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 53

Limitation of eager stream
processing Streams

• The producer might be much faster than the consumer
• This will produce a large intermediate stream that requires

potentially unbounded memory storage

x5 x4 x3 x2 x1
producer consumer

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 54

Solutions
There are three alternatives:

1. Play with the speed of the different threads, i.e. play with
the scheduler to make the producer slower

2. Create a bounded buffer, say of size N, so that the producer
waits automatically when the buffer is full

3. Use demand-driven approach, where the consumer activates
the producer when it needs a new element (lazy evaluation)

• The last two approaches introduce the notion of flow-
control between concurrent activities (very common)

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 55

Coroutines I
• Languages that do not support concurrent threads might

instead support a notion called coroutining
• A coroutine is a nonpreemptive thread (sequence of

instructions), there is no scheduler
• Switching between threads is the programmer’s

responsibility

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 56

Coroutines II, Comparison
{P ...} -- call

return
Procedures: one sequence of instructions, program transfers explicitly
when terminated it returns to the caller

procedure P

procedure Q

resume Q
coroutine P

coroutine Qspawn P

resume Q

resume P

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 57

Coroutines II, Comparison
{P ...} -- call

return
Coroutines: New sequences of instructions, programs explicitly
do all the scheduling, by spawn, suspend and resume

procedure P

procedure Q

resume Q
coroutine P

coroutine Qspawn P

resume Q

resume P

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 58

Time
• In concurrent computation one would like to handle time
• proc {Time.delay T} – The running thread

suspends for T milliseconds
• proc {Time.alarm T U} – Immediately creates its

own thread, and binds U to unit after T milliseconds

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 59

Example
local

proc {Ping N}
for I in 1..N do

{Delay 500} {Browse ping}
end
{Browse 'ping terminate'}

end
proc {Pong N}

for I in 1..N do
{Delay 600} {Browse pong}

end
{Browse 'pong terminate'}

end
in end

local
....
in

{Browse 'game started'}
thread {Ping 1000} end
thread {Pong 1000} end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 60

Concurrent control abstraction
• We have seen how threads are forked by ’thread ... end’
• A natural question to ask is: how can we join threads?

fork

join

threads

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 61

Termination detection
• This is a special case of detecting termination of multiple threads, and

making another thread wait on that event.

• The general scheme is quite easy because of dataflow variables:

thread áS1ñ X1 = unit end
thread áS2ñ X2 = X1 end

...
thread áSnñ Xn = Xn-1 end
{Wait Xn}
% Continue main thread

• When all threads terminate the variables X1 … XN will be merged together
labeling a single box that contains the value unit.

• {Wait XN} suspends the main thread until XN is bound.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 62

Concurrent Composition
conc S1 [] S2 [] … [] Sn end

{Conc [proc{$} S1 end
proc{$} S2 end

...
proc{$} Sn end] }

• Takes a single argument that is a list of nullary procedures.

• When it is executed, the procedures are forked
concurrently. The next statement is executed only when all
procedures in the list terminate.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 63

Conc
local

proc {Conc1 Ps I O}
case Ps of P|Pr then

M in
thread {P} M = I end
{Conc1 Pr M O}

[] nil then O = I
end

end
in

proc {Conc Ps}
X in {Conc1 Ps unit X}
{Wait X}

end
end

This abstraction takes
a list of zero-argument
procedures and terminate
after all these threads have
terminated

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 64

Example
local

proc {Ping N}
for I in 1..N do

{Delay 500} {Browse ping}
end
{Browse 'ping terminate'}

end
proc {Pong N}

for I in 1..N do
{Delay 600} {Browse pong}

end
{Browse 'pong terminate'}

end
in end

local
....
in

{Browse 'game started'}
{Conc

[proc {$} {Ping 1000} end
proc {$} {Pong 1000} end]}

{Browse ’game terminated’}
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 65

Futures
• A future is a read-only capability of a single-assignment variable. For

example to create a future of the variable X we perform the operation !! to
create a future Y: Y = !!X

• A thread trying to use the value of a future, e.g. using Y, will suspend until the
variable of the future, e.g. X, gets bound.

• One way to execute a procedure lazily, i.e. in a demand-driven manner, is to
use the operation {ByNeed +P ?F}.

• ByNeed takes a zero-argument function P, and returns a future F. When a
thread tries to access the value of F, the function {P} is called, and its result
is bound to F.

• This allows us to perform demand-driven computations in a straightforward
manner.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 66

Example

• declare Y
{ByNeed fun {$} 1 end Y}
{Browse Y}

• we will observe that Y becomes a future, i.e. we will see Y<Future> in the
Browser.

• If we try to access the value of Y, it will get bound to 1.

• One way to access Y is by perform the operation {Wait Y} which triggers
the producing procedure.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 67

Thread Priority and Real Time
• Try to run the program using the following statement:

– {Sum 0 thread {Generate 0 100000000} end}

• Switch on the panel and observe the memory behavior of the program.

• You will quickly notice that this program does not behave well.

• The reason has to do with the asynchronous message passing. If the producer
sends messages i.e. create new elements in the stream, in a faster rate than the
consumer can consume, increasingly more buffering will be needed until the
system starts to break down.

• One possible solution is to control experimentally the rate of thread execution so
that the consumers get a larger time-slice than the producers do.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 68

Priorities
• There are three priority levels:

• high,

• medium, and

• low (the default)

• A priority level determines how often a runnable thread is allocated a time slice.

• In Oz, a high priority thread cannot starve a low priority one. Priority determines only
how large piece of the processor-cake a thread can get.

• Each thread has a unique name. To get the name of the current thread the procedure
Thread.this/1 is called.

• Having a reference to a thread, by using its name, enables operations on threads such as:

• terminating a thread, or

• raising an exception in a thread.

• Thread operations are defined the standard module Thread.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 69

Thread priority and thread
control

fun {Thread.state T} %% returns thread state
proc{Thread.injectException T E} %% exception E injected into thread
fun {Thread.this} %% returns 1st class reference to thread
proc{Thread.setPriority T P} %% P is high, medium or low
proc{Thread.setThisPriority P} %% as above on current thread

fun{Property.get priorities} %% get priority ratios
proc{Property.put priorities(high:H medium:M)}

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 70

Thread Priorities

• Oz has three priority levels. The system procedure

{Property.put priorities p(medium:Y high:X)}

• Sets the processor-time ratio to X:1 between high-priority threads and medium-
priority thread.

• It also sets the processor-time ratio to Y:1 between medium-priority threads and
low-priority threads. X and Y are integers.

– Example:

{Property.put priorities p(high:10 medium:10)}

• Now let us make our producer-consumer program work. We give the producer
low priority, and the consumer high. We also set the priority ratios to 10:1
and 10:1.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 71

The program with priorities
local L in

{Property.put priorities p(high:10 medium:10)}
thread

{Thread.setThisPriority low}
L = {Generate 0 100000000}

end
thread

{Thread.setThisPriority high}
{Sum 0 L}

end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 72

Exercises

67. SALSA asynchronous message passing enables to tag messages with
properties: priority, delay, and waitfor. Erlang uses a selective
receive mechanism that can be used to implement priorities and
delays. Compare these mechanisms with Oz thread priorities, time
delays and alarms, and futures.

68. How do SALSA tokens relate to Oz dataflow variables and futures?
69. What is the difference between multiple thread termination detection

in Oz, process groups in Erlang, and join blocks in SALSA?
70. CTM Exercise 4.11.3 (page 339)

- Compare the sequential and concurrent execution performance of equivalent
SALSA and Erlang programs.

71. CTM Exercise 4.11.5 (page 339)

