Lazy Evaluation:
Infinite data structures, set comprehensions
(CTM Sections 1.8 and 4.5)

Carlos Varela
RPI
September 22, 2023

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Lazy evaluation

• The functions written so far are evaluated eagerly (as soon as they are called)
• Another way is lazy evaluation where a computation is done only when the result is needed

• Calculates the infinite list:

\[0 \mid 1 \mid 2 \mid 3 \mid \ldots \]

```declare
fun lazy {Ints N}
  N\mid{Ints N+1}
end```
let \( \sqrt{x} = \text{head} (\text{dropWhile} \ (\text{not} \ . \ \text{goodEnough}) \ \sqrt{\text{Guesses}}) \)

where

\[
\text{goodEnough} \ \text{guess} = \frac{\text{abs} (x - \text{guess} \times \text{guess})}{x} < 0.00001
\]

\[
\text{improve} \ \text{guess} = \frac{\text{guess} + x/\text{guess}}{2.0}
\]

\[
\sqrt{\text{Guesses}} = 1: (\text{map} \ \text{improve} \ \sqrt{\text{Guesses}})
\]

Infinite lists (\( \sqrt{\text{Guesses}} \)) are enabled by lazy evaluation.
Map in Haskell

\[
\text{map'} :: (a -> b) -> [a] -> [b]
\]
\[
\text{map'} _ [] = []
\]
\[
\text{map'} f (h:t) = f h:\text{map'} f t
\]

Functions in Haskell are lazy by default. That is, they can act on infinite data structures by delaying evaluation until needed.
Lazy evaluation (2)

• Write a function that computes as many rows of Pascal’s triangle as needed
• We do not know how many beforehand
• A function is lazy if it is evaluated only when its result is needed
• The function `PascalList` is evaluated when needed

```
fun lazy {PascalList Row}
Row | {PascalList}
 {AddList
 {ShiftLeft Row}
 {ShiftRight Row}}}
end
```
Lazy evaluation (3)

- Lazy evaluation will avoid redoing work if you decide first you need the 10th row and later the 11th row.
- The function continues where it left off.

```
def L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}
```

```
L<Future>
[1]
[1 1]
```
Lazy execution

- Without lazyness, the execution order of each thread follows textual order, i.e., when a statement comes as the first in a sequence it will execute, whether or not its results are needed later.
- This execution scheme is called *eager execution*, or *supply-driven* execution.
- Another execution order is that a statement is executed only if its results are needed somewhere in the program.
- This scheme is called *lazy evaluation*, or *demand-driven* evaluation (some languages use lazy evaluation by default, e.g., Haskell).
Example

B = \{F_1 \, X\}
C = \{F_2 \, Y\}
D = \{F_3 \, Z\}
A = B + C

- Assume \( F_1 \), \( F_2 \) and \( F_3 \) are lazy functions
- \( B = \{F_1 \, X\} \) and \( C = \{F_2 \, Y\} \) are executed only if and when their results are needed in \( A = B + C \)
- \( D = \{F_3 \, Z\} \) is not executed since it is not needed
Example

- In lazy execution, an operation suspends until its result is needed.
- The suspended operation is triggered when another operation needs the value for its arguments.
- In general multiple suspended operations could start concurrently.

\[ A = B + C \]

\[ B = \{F1 \ X\} \]

\[ C = \{F2 \ Y\} \]

Demand
Example II

- In data-driven execution, an operation suspends until the values of its arguments results are available.
- In general the suspended computation could start concurrently.

\[
B = \{F1 \ X\} \\
C = \{F2 \ Y\} \\
A = B + C
\]
Using Lazy Streams

fun \{Sum Xs A Limit\}
  if Limit>0 then
    case Xs of X|Xr then
      \{Sum Xr A+X Limit-1\}
    end
  else A end
end

local Xs S in
  Xs=\{Ints 0\}
  S=\{Sum Xs 0 1500\}
  \{Browse S\}
end
How does it work?

fun \{\text{Sum } Xs \ A \ \text{Limit}\} \\
\quad \text{if } \text{Limit}>0 \text{ then} \\
\quad \quad \text{case } Xs \ \text{of } X|Xr \ \text{then} \\
\quad \quad \quad \text{\{Sum } Xr \ A+X \ \text{Limit-1}\} \\
\quad \quad \text{end} \\
\quad \text{else } A \ \text{end} \\
\text{end}

fun lazy \{\text{Ints } N\} \\
\quad N \mid \{\text{Ints } N+1\}

local Xs \ S \ \text{in} \\
\quad Xs = \{\text{Ints } 0\} \\
\quad S=\{\text{Sum } Xs \ 0 \ 1500\} \\
\quad \{\text{Browse } S\} \\
\text{end}
Improving throughput

- Use a lazy buffer
- It takes a lazy input stream In and an integer N, and returns a lazy output stream Out
- When it is first called, it first fills itself with N elements by asking the producer
- The buffer now has N elements filled
- Whenever the consumer asks for an element, the buffer in turn asks the producer for another element
The buffer example
The buffer

fun \{Buffer1 In N\}
   End=\{List.drop In N\}

   fun lazy \{Loop In End\}
      In.1|\{Loop In.2 End.2\}
   end

in
   \{Loop In End\}
end

Traversing the In stream, forces the producer to emit N elements
fun \{Buffer2 \text{ In N}\}
   \text{End} = \text{thread}
      \{\text{List.drop} \text{ In N}\}
   \text{end}

fun lazy \{\text{Loop} \text{ In End}\}
   \text{In.1|}\{\text{Loop} \text{ In.2 End.2}\}
   \text{end}

in
   \{\text{Loop} \text{ In End}\}
end

Traversing the In stream, forces the producer to emit N elements \textbf{and at the same time} serves the consumer
### The buffer III

```plaintext
fun \{Buffer3 In N\}
 End = thread
 \{List.drop In N\}
 end

fun lazy \{Loop In End\}
 E2 = thread End.2 end
 In.1|\{Loop In.2 E2\}
 end

in
\{Loop In End\}
end
```

Traverse the In stream, forces the producer to emit N elements and at the same time serves the consumer, and requests the next element ahead.
Larger Example: The Sieve of Eratosthenes

- Produces prime numbers
- It takes a stream 2...N, peals off 2 from the rest of the stream
- Delivers the rest to the next sieve
Lazy Sieve

fun lazy {Sieve Xs}
  X|Xr = Xs in
  X | {Sieve {LFilter
    Xr
      fun {$ Y} Y mod X \neq 0 end
    }}
end

fun {Primes} {Sieve {Ints 2}} end
Lazy Filter

For the Sieve program we need a lazy filter

```
fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end
```
Primes in Haskell

ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)

Functions in Haskell are lazy by default. You can use take 20 primes to get the first 20 elements of the list.
Define streams implicitly

• Ones = 1 | Ones
• Infinite stream of ones

C. Varela; Adapted from S. Haridi and P. Van Roy
Define streams implicitly

- $Xs = 1 \mid \{LMap Xs$
  
  \text{fun} \ \{\$X\} \ X+1 \ \text{end}\}

- What is $Xs$?
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a \cdot 3^b \cdot 5^c$ with $a, b, c \geq 0$ (in ascending order)
The Hamming problem

- Generate the first $N$ elements of stream of integers of the form: $2^a 3^b 5^c$ with $a, b, c \geq 0$ (in ascending order)
The Hamming problem

• Generate the first N elements of stream of integers of the form: $2^a \cdot 3^b \cdot 5^c$ with $a, b, c \geq 0$ (in ascending order)
Lazy File Reading

fun {ToList FO}
    fun lazy {LRead} L T in
        if {File.readBlock FO L T} then
            T = {LRead}
        else T = nil {File.close FO} end
        L
    end
    {LRead}
end

• This avoids reading the whole file in memory
List Comprehensions

- Abstraction provided in lazy functional languages that allows writing higher level set-like expressions
- In our context we produce lazy lists instead of sets
- The mathematical set expression
  - \{x*y \mid 1 \leq x \leq 10, 1 \leq y \leq x\}
- Equivalent List comprehension expression is
  - \[X*Y \mid X = 1..10 ; Y = 1..X\]
- Example:
  - \[1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10\]
List Comprehensions

- The general form is
- \[ f(x, y, ..., z) \mid x \leftarrow \text{gen}(a_1, ..., a_n) \; ; \; \text{guard}(x, ...) \\
  y \leftarrow \text{gen}(x, a_1, ..., a_n) \; ; \; \text{guard}(y, x, ...) \\
  \ldots \]

- No linguistic support in Mozart/Oz, but can be easily expressed
Example 1

- \( z = [x \# x \mid x \leftarrow \text{from}(1,10)] \)
- \( Z = \{ \text{LMap} \ {\text{LFrom } 1 \ 10} \ \text{fun} \{\$ X\} \ X \# X \ \text{end} \} \)

- \( z = [x \# y \mid x \leftarrow \text{from}(1,10), y \leftarrow \text{from}(1,x)] \)
- \( Z = \{ \text{LFlatten} \)
  \( \{ \text{LMap} \ {\text{LFrom } 1 \ 10} \)
  \( \text{fun} \{\$ X\} \ {\text{LMap} \ {\text{LFrom } 1 \ X} \)
  \( \text{fun} \ {\$ Y} \ X \# Y \ \text{end} \)
  \( \} \)
  \( \} \)
  \( \} \)
Example 2

• \[ z = [x\#y \mid x \leftarrow \text{from}(1,10), \ y \leftarrow \text{from}(1,x), \ x+y\leq10] \]

• \[ Z = \{ \text{LFilter} \}
  \{ \text{LFlatten} \}
  \{ \text{LMap} \ \{ \text{LFrom} \ 1 \ 10 \} \}
  \{ \text{fun} \ \{ \ X \} \ \{ \text{LMap} \ \{ \text{LFrom} \ 1 \ X \} \}
    \{ \text{fun} \ \{ \ Y \} \ X\#Y \text{ end} \}
  \} \text{ end } \}
\} \text{ end } \}
\}
\}
\}

fun \ \{ \ X\#Y \} \ X+Y=\leq10 \text{ end} \} \}
List Comprehensions in Haskell

\[ \text{lc1} = [(x,y) | x \leftarrow [1..10], y \leftarrow [1..x]] \]

\[ \text{lc2} = \text{filter} (\lambda(x,y)\rightarrow(x+y\leq10)) \text{lc1} \]

\[ \text{lc3} = [(x,y) | x \leftarrow [1..10], y \leftarrow [1..x], x+y\leq 10] \]

Haskell provides syntactic support for list comprehensions. List comprehensions are implemented using a built-in list monad.
Quicksort using list comprehensions

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (h:t) = quicksort [x | x <- t, x < h] ++
  [h] ++
quicksort [x | x <- t, x >= h]
Higher-order programming

• Higher-order programming = the set of programming techniques that are possible with procedure values (lexically-scoped closures)

• Basic operations
  – Procedural abstraction: creating procedure values with lexical scoping
  – Genericity: procedure values as arguments
  – Instantiation: procedure values as return values
  – Embedding: procedure values in data structures

• Higher-order programming is the foundation of component-based programming and object-oriented programming
Embedding

• Embedding is when procedure values are put in data structures

• Embedding has many uses:
  – **Modules**: a module is a record that groups together a set of related operations
  – **Software components**: a software component is a generic function that takes a set of modules as its arguments and returns a new module. It can be seen as specifying a module in terms of the modules it needs.
  – **Delayed evaluation** (also called *explicit lazy evaluation*): build just a small part of a data structure, with functions at the extremities that can be called to build more. The consumer can control explicitly how much of the data structure is built.
Explicit lazy evaluation

- Supply-driven evaluation. (e.g. The list is completely calculated independent of whether the elements are needed or not.)
- Demand-driven execution. (e.g. The consumer of the list structure asks for new list elements when they are needed.)
- Technique: a programmed trigger.
- How to do it with higher-order programming? The consumer has a function that it calls when it needs a new list element. The function call returns a pair: the list element and a new function. The new function is the new trigger: calling it returns the next data item and another new function. And so forth.
Explicit lazy functions

```
fun lazy {From N}
 N | {From N+1}
end
```

```
fun {From N}
 fun ${} N | {From N+1} end
end
```
The following defines the syntax of a statement, \( \langle s \rangle \) denotes a statement

\[
\langle s \rangle ::= \text{skip} \quad \text{empty statement}
\]

\[
\quad \mid \quad \ldots
\]

\[
\quad \mid \quad \text{thread} \ \langle s_1 \rangle \ \text{end} \quad \text{thread creation}
\]

\[
\quad \mid \quad \{ \text{ByNeed} \ \text{fun} \{ \$ \} \ \langle e \rangle \ \text{end} \quad \langle x \rangle \} \quad \text{by need statement}
\]

\[
\begin{align*}
\text{zero arity} & \quad \text{function} \\
\text{variable} & \quad \text{by need statement}
\end{align*}
\]
Implementation

A function value is created in the store (say \( f \)) the function \( f \) is associated with the variable \( x \) execution proceeds immediately to next statement
A function value is created in the store (say \( f \)) the function \( f \) is associated with the variable \( x \) execution proceeds immediately to next statement
Accessing the ByNeed variable

• \( X = \{\text{ByNeed } \text{fun} \{\$\} 111*111 \text{ end}\} \) (by thread T0)

• Access by some thread T1
  – if \( X > 1000 \) then \{Browse hello\#X\} end

  or

  – \{Wait X\}
  – Causes X to be bound to 12321 (i.e. 111*111)
Implementation

Thread T1

1. X is needed
2. start a thread T2 to execute F (the function)
3. only T2 is allowed to bind X

Thread T2

1. Evaluate Y = \{F\}
2. Bind X the value Y
3. Terminate T2
4. Allow access on X
Lazy functions

fun lazy {Ints N}
  N | {Ints N+1}
end

fun {Ints N}
  fun {F} N | {Ints N+1} end
in {ByNeed F}
end
Lazy Map

fun lazy \{LMap \ Xs \ F\}
  case \ Xs \n  of nil then nil
    [] \ X|Xr \ then
      \{F \ X\}|\{LMap \ Xr \ F\}
    end
  end
end
Sqrt using an infinite list in Oz

fun {Sqrt X}
  fun {GoodEnough G}
    {Abs X - G*G}/X < 0.000001
  end
  fun {Improve G}
    (G + X/G)/2.0
  end
  SqrtGuesses = 1.0 | {LMap SqrtGuesses Improve}
in
  {List.dropWhile SqrtGuesses {Compose Bool.'not' GoodEnough}}.1
end

Infinite lists (SqrtGuesses) are enabled by lazy evaluation.
Exercises

26. Write a lazy append list operation $\text{LazyAppend}$. Can you also write $\text{LazyFoldL}$? Why or why not?

27. CTM Exercise 4.11.10 (pg 341)

28. CTM Exercise 4.11.13 (pg 342)

29. CTM Exercise 4.11.17 (pg 342)

30. Solve exercise 29 (Hamming problem) in Haskell.