Exam 1 Review
Exam 1

- Exam 1 today at 6:55pm-8:45pm.

- Honor Code:
 - Open book, open notes, open slides,
 - no use of compilers, no communication with others.
 - You must only submit *your own* answers.

- Type into Submitty (like Quizzes).
Topics

Reasoning about code

- Forward and backward reasoning, logical conditions, Hoare triples, weakest precondition, rules for assignment, sequence, if-then-else, loops, loop invariants, decrementing functions
Forward Reasoning

- Forward reasoning simulates the execution of code. Introduces facts as it goes along

 E.g., \{ x = 1 \}

 \[
 \begin{align*}
 y &= 2 \times x \\
 \{ x = 1 \land y = 2 \} \\
 z &= x + y \\
 \{ x = 1 \land y = 2 \land z = 3 \}
 \end{align*}
 \]

- Collects all facts, often those facts are irrelevant to the goal
Backward Reasoning

Backward reasoning “goes backwards”. Starting from a given postcondition, finds the weakest precondition that ensures the postcondition.

E.g., \(\{ y < 1 \} \) // Simplify \(2y < y+1 \) into \(\{ y < 1 \} \)

\[
\begin{align*}
z &= y + 1 & \text{// Substitute } y+1 \text{ for } z \text{ in } 2y < z\\
\{ 2*y < z \} \\
\end{align*}
\]

\[
\begin{align*}
x &= 2*y & \text{// Substitute rhs } 2*y \text{ for } x \text{ in } x < z\\
\{ x < z \} \\
\end{align*}
\]

- More focused and more useful
Condition Strength

- “P is stronger than Q” means “P implies Q”
- “P is stronger than Q” means “P guarantees no less than Q”
 - E.g., $x > 0$ is stronger than $x > -1$
- Values satisfying P also satisfy Q
 - E.g., values satisfying $x > 0$ also satisfy $x > -1$

- Stronger means more specific
- Weaker means more general
Which one is stronger?

- \(x > -10 \) or \(x > 0 \)
- \(x > 0 \) \(\land \) \(y = 0 \) or \(x > 0 \) \(\lor \) \(y = 0 \)
- \(0 \leq x \leq 10 \) or \(5 \leq x \leq 11 \) (Neither!)
- \(y \equiv 2 \) (mod 4) or \(y \) is even
- \(x = 10 \) or \(x \) is even
Hoare Triples

A Hoare Triple: \{ P \} code \{ Q \}
- P and Q are logical statements about program values, and code is program code (in our case, Java code)
- "\{ P \} code \{ Q \}" means "if P is true and we execute code, and it terminates, then Q is true afterwards"
- "\{ P \} code \{ Q \}" is a logical formula, just like "0\leq index"
Examples of Hoare Triples

{ x>0 } x++ { x>1 } is true

{ x>0 } x++ { x>-1 } is true

{ x≥0 } x++ { x>1 } is false. Why?

{x>0} x++ {x>0} is ??

{x<0} x++ {x<0} is ??

{x=a} if (x < 0) x=-x { x = | a | } is ??

{x=y} x=x+3 {x=y} is ??
Rules for Backward Reasoning: Assignment

// precondition: ??
x = expression

// postcondition: Q

Rule: the weakest precondition = Q, with all occurrences of x in Q replaced by expression

More formally:

wp("x=expression;",Q) = Q with all occurrences of x replaced by expression
Rules for Backward Reasoning: Sequence

// precondition: ??
S1; // statement
S2; // another statement
// postcondition: Q

Work backwards:
precondition is \(wp(\text{"S1;S2;"}, Q) = wp(\text{"S1;"}, wp(\text{"S2;"}, Q)) \)

Example:
// precondition: ??
\[
\begin{align*}
x &= 0; \\
y &= x + 1; \\
// postcondition: y > 0
\end{align*}
\]

// precondition: ??
\[
\begin{align*}
x &= 0; \\
// postcondition for x=0; same as \\
// precondition for y=x+1; \\
y &= x + 1; \\
// postcondition y > 0
\end{align*}
\]
Rules for If-then-else

Forward reasoning

\[
\begin{align*}
\{ P \} \\
\text{if } b \\
\{ P \land b \} \\
S1 \\
\{ Q1 \} \\
\text{else} \\
\{ P \land \neg b \} \\
S2 \\
\{ Q2 \} \\
\{ Q1 \lor Q2 \}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ (b \land \text{wp}("S1",Q)) \lor (\neg b \land \text{wp}("S2",Q)) \} \\
\text{if } b \\
\{ \text{wp}("S1",Q) \} \\
S1 \\
\{ Q \} \\
\text{else} \\
\{ \text{wp}("S2",Q) \} \\
S2 \\
\{ Q \} \\
\{ Q \}
\end{align*}
\]
1. **Partial correctness**
 - Figure out loop invariant
 - Prove loop invariant using computation induction
 - Loop exit condition (i.e., \(!b\)) and loop invariant imply the desired postcondition

2. **Termination**
 - Figure out “decrementing function” \(D\):
 1) \(D\) is bounded, 2) at each iteration \(D\) decreases, and 3) \(D = 0\) (or min) AND loop invariant, imply loop exit condition (i.e., \(D = 0\) (or min) AND loop invariant imply \(!b\))
Example: Partial correctness

Precondition: \(x \geq 0; \)
\[i = x; \]
\[z = 0; \]
while (\(i \neq 0 \)) {
 \[z = z+1; \]
 \[i = i-1; \]
}
Postcondition: \(x = z; \)

1) \(i=x \) and \(z=0 \) give us that \(i+z = x \) holds at \(0^{th} \) iteration of loop // Base case

2) Assuming that \(i+z = x \) holds after \(k^{th} \) iteration, we show it holds after \((k+1)^{st} \) iteration // Induction
\[z_{\text{new}} = z + 1 \quad \text{and} \quad i_{\text{new}} = i - 1 \]
\[z_{\text{new}} + i_{\text{new}} = z + 1 + i - 1 = z + i = x \]

3) If loop terminated, we know \(i = 0 \).
Since \(z+i = x \) holds, we have \(x = z \)
Example: Termination

Precondition: \(x \geq 0 \);
\(i = x; \)
\(z = 0; \)

while (\(i \neq 0 \)) {
 \(z = z + 1; \)
 \(i = i - 1; \)
}

Postcondition: \(x = z; \)

First, prove that \(i \geq 0 \). Indeed \(i \geq 0 \) is a loop invariant.

Decrementing function \(D \) is \(i \).
1) \(D \) is bounded below by 0 (see above).
2) \(D \) decreases
3) \(D = 0 \) implies \(i = 0 \) (loop exit condition).
Reasoning About Loops

\{P\} \textbf{while} \ (b) \ S \ \{Q\}
Reasoning About Loops

- Loop invariant Inv must be such that
 1) \(P \Rightarrow Inv \) // Inv holds before loop. **Base case**
 2) \(\{ Inv \land b \} \mathcal{S} \{ Inv \} \) // Assuming Inv held after \(k \)th iteration and execution took a \((k+1) \)st iteration, then Inv holds after \((k+1) \)st iteration. **Induction**
 3) \((Inv \land \neg b) \Rightarrow Q\) // The exit condition \(\neg b \) and loop invariant Inv must imply postcondition

- Decrementing function D must be such that
 1) D is bounded
 2) D decreases every time we go through the loop
 3) \((D = 0 \, (or \, min) \land Inv) \Rightarrow \neg b\)
Topics

Specifications

- Benefits of specifications, PoS specification convention, specification style, specification strength (stronger vs. weaker specifications), comparing specifications via logical formulas, converting PoS specifications into logical formulas
Specifications

- A specification consists of a **precondition** and a **postcondition**
 - **Precondition**: conditions that hold before method executes
 - **Postcondition**: conditions that hold after method finished execution (if precondition held!)
A specification is a contract between a method and its caller

Obligations of the method (implementation of specification): agrees to provide postcondition if precondition held!

Obligations of the caller (user of specification): agrees to meet the precondition and not expect more than postcondition promised
Example Specification

Precondition: \(\text{len} \geq 1 \) && \(\text{arr.length} = \text{len} \)

Postcondition: returns \(\text{arr[0]} + \ldots + \text{arr[arr.length-1]} \)

double sum(int[] arr, int len) {
 double sum = arr[0];
 int i = 1;
 while (i < len) {
 sum = sum + arr[i];
 i = i+1;
 }
 return sum;
}
Benefits of Specifications

- Precisely documents method behavior
 - Imagine if you had to read the code of the Java libraries to figure what they do!
 - An abstraction --- abstracts away unnecessary detail
- Promotes modularity
- Enables reasoning about correctness
 - Through testing and/or verification
PoS Specifications

- Specification convention due to Michael Ernst
- The precondition
 - requires: clause spells out constraints on client
- The postcondition
 - modifies: lists objects (typically parameters) that may be modified by the method. Any object not listed under this clause is guaranteed untouched
 - effects: describes final state of modified objects
 - returns: describes return value
 - throws: lists possible exceptions
Example

```java
static List<Integer> listAdd(List<Integer> lst1, List<Integer> lst2) {
    List<Integer> res = new ArrayList<Integer>();
    for (int i = 0; i < lst1.size(); i++)
        res.add(lst1.get(i) + lst2.get(i));
    return res;
}
```
Another Example

static void listAdd2(List<Integer> lst1,
 List<Integer> lst2)

 requires: lst1, lst2 are non-null.
 lst1 and lst2 are same size.
 modifies: lst1
 effects: i-th element of lst1 is replaced with the sum of i-th elements of lst1 and lst2
 returns: none

static void listAdd(List<Integer> lst1,
 List<Integer> lst2) {
 for (int i = 0; i < lst1.size(); i++) {
 lst1.set(i, lst1.get(i) + lst2.get(i));
 }
}
Specification Style

- A method is called for its side effects (effects clause) or its return value (returns clause)
 - It is bad style to have both effects and return
 - There are exceptions
 - E.g., HashMap.put returns the previous value
- Main point of spec is to be helpful
 - Being overly formal may not help
 - Being too informal does not help either
- If spec turns too complex: redesign. Better to simplify code than document complexity!
static void uniquefy(List<Integer> lst) {
 for (int i = 0; i < lst.size() - 1; i++)
 if (lst.get(i) == lst.get(i+1))
 lst.remove(i);
}

What’s Wrong?
Specification Strength

- “A is stronger than B” means
 - For every implementation I
 - “I satisfies A” implies “I satisfies B”
 - The opposite is not necessarily true
 - For every client C
 - “C works with B” implies “C works with A”
 - The opposite is not necessarily true

- Principle of substitutability:
 - A stronger spec can always be substituted for a weaker one
Why Care About Specification Strength?

- Because of substitutability!

- Principle of substitutability
 - A stronger specification can always be substituted for a weaker one
 - I.e., an implementation that conforms to a stronger specification can be used in a client that expects a weaker specification
Substitutability

- Substitutability guarantees correct software updates, correct class hierarchies

- Client code: `X x; ... x.foo(index);`
 - Client is “polymorphic”: written against `X`, but it is expected to work with any subclass of `X`
 - A subclass of `X`, say `Y`, may have its own implementation of `foo`, `Y.foo(int)`. Client must work correctly with `Y.foo(int)`!

- If spec of `Y.foo(int)` is stronger than that of `X.foo(int)` then we can safely substitute `Y.foo(int)` for `X.foo(int)`!
Strengthening and Weakening Specification

- **Strengthen a specification**
 - Require less of client: fewer conditions in requires clause
 - Promise more to client: effects, modifies, returns

- **Weaken a specification**
 - Require more of client: add conditions to requires
 - Promise less to client: effects, modifies, returns

 clauses are weaker, thus easier to satisfy in code
Comparing by Logical Formulas

Let Spec A: \{P_A\} code \{Q_A\},
Spec B: \{P_B\} code \{Q_B\}.

We say code satisfies a specification with precondition P and postcondition Q iff \{P\} code \{Q\} Hoare triple is true.

Do not confuse it with P => Q.

e.g., \{ x = 0 \} x = 1; \{ x = 1 \} is true, but x = 0 => x = 1 is false.

also, \{ x = 0 \} x = -1; \{ x >= 0 \} is false, but x = 0 => x >= 0 is true.
Comparing by Logical Formulas

Let Spec A: \{P_A\} \textbf{code} \{Q_A\},
Spec B: \{P_B\} \textbf{code} \{Q_B\}.

The following are equivalent:

- $P_B \Rightarrow P_A$ and $Q_A \Rightarrow Q_B$
- A is stronger than B
- $A \Rightarrow B$
Comparing by Logical Formulas

Let \(A = \{P_A\} \text{ code } \{Q_A\} \),
\[B = \{P_B\} \text{ code } \{Q_B\} \]
be Hoare triples.

\(A \) is stronger than \(B \) if and only if \(P_A \) is weaker than \(P_B \) and \(Q_A \) is stronger than \(Q_B \), i.e.,

\[A \Rightarrow B \iff (P_B \Rightarrow P_A \land Q_A \Rightarrow Q_B). \]

\(A \Rightarrow B \) means that any code satisfying \(A \) also satisfies \(B \).
Exercise: Order by Strength

Spec A: requires: a non-negative int argument
returns: an int in [1..10]

Spec B: requires: int argument
returns: an int in [2..5]

Spec C: requires: true
returns: an int in [2..5]

Spec D: requires: an int in [1..10]
returns: an int in [1..20]
Converting PoS Specs into Logical Formulas

- PoS specification
 - requires: R
 - modifies: M
 - effects: E // absorbs throws, returns and effects

Spec is equivalent to the following logical formula:
\{R\} code \{ E \^ (nothing but M is modified)\}

Step 1: absorb throws and returns into effects E
Step 2: \{R\} code \{(E \^ (nothing but M is modified)\}
Convert Spec to Formula, step 1: absorb **throws** and **returns** into **effects**

- set from `java.util.ArrayList<T>`

  ```
  T set(int index, T element)
  ```

 requires: true
 modifies: this[index]
 effects: this\textsubscript{post}[index] = element
 throws: IndexOutOfBoundsException if index < 0 || index ≥ size
 returns: this\textsubscript{pre}[index]

 Absorb effects, returns and throws into new **effects:**

  ```
  if index < 0 || index ≥ size then
    throws IndexOutOfBoundsException
  else this\textsubscript{post}[index] = element and returns this\textsubscript{pre}[index]
  ```
Convert Spec to Formula, step 2: Convert into Formula

```java
set from java.util.ArrayList<T>

T set(int index, T element)
requires: true
modifies: this[index]
effects: if index < 0 || index ≥ size then
    throws IndexOutOfBoundsException
else
    this\_post[index] = element and returns this\_pre[index]
```

Denote **effects** expression by \(E \). Resulting formula is:

\[
\{\text{true}\} \text{ code } \left(E \land \left(\forall i \neq \text{index}, \ this_{\text{post}}[i] = this_{\text{pre}}[i] \right) \right)
\]
Stronger Specification

• S1 is stronger than S2 iff

\{R_1\} \text{ code } \{E_1 ^\text{(only } M_1 \text{ is modified)}\} \\
=> \\
\{R_2\} \text{ code } \{E_2 ^\text{(only } M_2 \text{ is modified)}\}

iff \ R_2 \Rightarrow R_1 ^\text{(only } M_1 \text{ is modified}) \Rightarrow (E_2 ^\text{(only } M_2 \text{ is modified)})

iff \ R_2 \Rightarrow R_1 ^ E_1 \Rightarrow E_2 ^\text{(only } M_1 \text{ is modified}) \Rightarrow \text{(only } M_2 \text{ is modified)}

iff \ R_2 \Rightarrow R_1 ^ E_1 \Rightarrow E_2 ^\text{(M}_1 \subseteq M_2\text{)}
Stronger Specification

• \(S1 \) is stronger than \(S2 \) if \(R_2 \Rightarrow R_1 \wedge E_1 \Rightarrow E_2 \wedge (M_1 \subseteq M_2) \)

• A stronger specification:
 • Requires less
 • Guarantees more
 • Modifies less
Topics

- ADTs
 - Benefits of ADT methodology, Specifying ADTs, Rep invariants, Representation exposure, Checking rep invariants, Abstraction functions
ADTs

- Abstract Data Type (ADT): higher-level data abstraction
 - The ADT is \textit{operations} + \textit{object}
 - A specification mechanism
 - A way of thinking about programs and design
An ADT Is a Set of Operations

- Operations operate on data representation
- ADT abstracts from organization to meaning of data
- ADT abstracts from structure to use
- Data representation does not matter!

```java
class Point {
    float r, theta;
}
```

- Instead, think of a type as a set of operations: create, x(), y(), r(), theta().
- Force clients to call operations to access data
Specifying an ADT

<table>
<thead>
<tr>
<th>immutable</th>
<th>mutable</th>
</tr>
</thead>
<tbody>
<tr>
<td>class TypeName</td>
<td>class TypeName</td>
</tr>
</tbody>
</table>

1. overview
2. abstract fields
3. creators
4. observers
5. producers
6. mutators

Spring 2021 CSCI 2600
Connecting Implementation to Specification

- **Representation invariant**: Object \rightarrow boolean
 - Indicates whether data representation is well-formed. Only well-formed representations are meaningful
 - Defines the set of valid values

- **Abstraction function**: Object \rightarrow abstract value
 - What the data structure really means
 - E.g., array [2, 3, -1] represents $-x^2 + 3x + 2$
 - How the data structure is to be interpreted
Representation Exposure

- Client can get control over rep and break the rep invariant! Consider
  ```java
  IntSet s = new IntSet();
  s.add(1);
  List<Integer> li = s.getElements();
  li.add(1); // Breaks IntSet’s rep invariant!
  ```
- Representation exposure is external access to the rep. **AVOID!!!**
- If you allow representation exposure, document why and how and feel bad about it
Representation Exposure

- Make a copy on the way out:

```java
public List<Integer> getElements() {
    return new ArrayList<Integer>(data);
}
```

- Mutating a copy does not affect IntSet’s rep

```java
IntSet s = new IntSet();
s.add(1);
List<Integer> li = s.getElements();
li.add(1); // mutates new copy, not IntSet’s rep
```
Make a copy on the way in too:

```java
public IntSet(ArrayList<Integer> elts) {
    data = new ArrayList<Integer>(elts);
    ...
}
```

Why?
Abstraction function allows us to reason about correctness of the implementation.
IntSet Example

Creating concrete object:
- Establish rep invariant
- Establish abstraction function

After every operations:
- Maintains rep invariant
- Maintains abstraction function