Pi Calculus

The π calculus (Milner et al., 1992) is the main representative of a family of process algebra-based models, which has its roots in earlier models of concurrency such as:

- Communicating Sequential Processes (CSP) (Hoare, 1985)
- Petri Nets (Petri, 1962)
Pi Calculus

Its key feature is *mobility* of processes (Milner’s Turing Award lecture 1993).

- Mobility is represented as dynamic reconfiguration of the topology of communicating processes.
- Inspired by the actor model (Hewitt 1973) to more closely model practical distributed and mobile systems.
- Process algebras have been used as theoretical frameworks to reason about concurrency
 - Introduced techniques such as *bisimulation*, in order to study equivalence of concurrent programs.
Theory and Practice

“In theory, theory and practice are highly related. In practice,...”

<table>
<thead>
<tr>
<th>Model</th>
<th>Paradigm(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ calculus</td>
<td>Functional Programming</td>
</tr>
<tr>
<td>First order logic</td>
<td>Logic Programming</td>
</tr>
<tr>
<td>π calculus / Actors</td>
<td>Concurrent Programming</td>
</tr>
</tbody>
</table>

See also, “A Theory of Objects” (Abadi and Cardelli, 1996).
A simple interaction between two processes over a channel b can be modeled as follows in the π calculus:

$$\overline{ba}.S \mid b(c)\overline{cd}.P$$
Π Calculus Example

After the interaction, the printer process has “moved” from the server to the client:

\[
\bar{b}a.S \mid b(c).\bar{c}d.P \\
\xrightarrow{\tau} S \mid \bar{c}d.P\{a/c\} \\
\equiv S \mid \bar{a}d.P
\]
Π Calculus Notation

Channels / Names

- a, b, c, \ldots

Processes / Agents

- P, Q, R, \ldots

e.g.:

\[
\overline{ba}.S | b(c).\overline{cd}.P \\
\xrightarrow{\tau} S | \overline{cd}.P\{a/c\} \\
\equiv S | \overline{ad}.P
\]
\(\Pi \) Calculus Syntax

\begin{align*}
\alpha & ::= \overline{c}x & \text{Write } x \text{ on channel } c \\
& ::= c(x) & \text{Read } x \text{ on channel } c \\
& ::= \tau & \text{No interaction} \\
P, Q & ::= 0 & \text{Empty process} \\
& ::= \alpha.P & \text{Prefixed process} \\
& ::= P | Q & \text{Concurrent composition of } P \text{ and } Q \\
& ::= P + Q & \text{Nondeterministic choice of } P \text{ or } Q \\
& ::= (\nu c)P & \text{New channel } c, \text{ scope restricted to } P \\
\text{if } x = y \text{ then } P & & \text{Conditional execution (match)} \\
\text{if } x \neq y \text{ then } P & & \text{Conditional execution (mismatch)} \\
A(y_1, \ldots, y_n) & & \text{Process invocation} \\
\Delta & ::= A(x_1, \ldots, x_n) \triangleq P & \text{Process declaration}
\end{align*}
Free and Bound Variable Occurrences

It is important to understand the notion of scope of variables, since the same channel name, e.g., \(x \), may refer to different channels if it appears in different scopes.

\[
\begin{align*}
\text{bind } x \text{ in } P. \\
(\nu x)P \\
\{ \text{does not bind } x \text{ in } P. \\
\end{align*}
\]
Free and Bound Variable Occurrences

For example, in the expression:

\[c(x) \cdot d x . P \]

the variable \(x \) refers to the same channel, that whose name is read over channel \(c \) and subsequently written over channel \(d \).

On the other hand, in the expression:

\[\bar{c} x . d(x) . P \]

the two occurrences of variable \(x \) are in two different scopes:

- the first \(x \) refers to a channel whose name is to be written over channel \(c \),
- and the second \(x \) is creating a new scope to represent a channel whose name is read over channel \(d \) and potentially subsequently used in \(P \).
Exercise 3.6.1

Define the sets of free variable names (fn) and bound variable names (bn) of the following expressions in terms of a, x, fn(P) and bn(P).

1. $\text{fn}(a(x).P) =$

2. $\text{fn}((\nu x)P) =$

3. $\text{fn}({\bar a}x.P) =$

4. $\text{bn}(a(x).P) =$

5. $\text{bn}((\nu x)P) =$

6. $\text{bn}({\bar a}x.P) =$
Structural Congruence

P and Q are structurally congruent, $P \equiv Q$, in any of the following cases:

1. P and Q are variants of α-conversion.

2. P and Q are related by the Abelian monoid laws for $|$ and $+$:

 \[
 P|Q \equiv Q|P \quad P+Q \equiv Q+P \\
 (P|Q)|R \equiv P|(Q|R) \quad (P+Q)+R \equiv P+(Q+R) \\
 P|0 \equiv P \quad P+P \equiv P
 \]

3. P and Q are related by the unfolding law:

 \[A(\overline{y}) \equiv P\{\overline{y}/\overline{x}\} \quad \text{if} \quad A(\overline{x}) \triangleq P\]
Structural Congruence

P and Q are structurally congruent, $P \equiv Q$, in any of the following cases:

4. P and Q are related by the scope extension laws:

\[
(\nu x)0 \equiv 0
\]

\[
(\nu x)(P \mid Q) \equiv P \mid (\nu x)Q \quad \text{if } x \notin \text{fn}(P).
\]

\[
(\nu x)(P + Q) \equiv P + (\nu x)Q \quad \text{if } x \notin \text{fn}(P).
\]

\[
(\nu x)\text{if } u = v \text{ then } P \equiv \text{if } u = v \text{ then } (\nu x)P \quad \text{if } x \notin \{u, v\}.
\]

\[
(\nu x)\text{if } u \neq v \text{ then } P \equiv \text{if } u \neq v \text{ then } (\nu x)P \quad \text{if } x \notin \{u, v\}.
\]

\[
(\nu x)(\nu y)P \equiv (\nu y)(\nu x)P
\]
Example of Second Scope Extension Law

The second scope extension law is important (when applied from right to left) because it allows to extend the scope of a variable x from a single process Q to the concurrent composition $P \parallel q$, provided it does not capture free occurrences of x in P.

For example, consider the expression:

$$a(y).P \parallel (\nu b)\tilde{a}b.Q$$

(1)

Assuming that $b \notin \text{fn}(P) \cup \{a\}$, we can apply scope extension to make it structurally congruent to:

$$(\nu b)(a(y).P \parallel \tilde{a}b.Q)$$

The latter expression can evolve by communication of the concurrent embedded processes over channel a into:

$$(\nu b)(P\{b/y\} \parallel Q)$$
Exercise

Reduce the following π-calculus expressions:

1. $a(x).\overline{cx} | (\nu b)\overline{ab}$
2. $a(b).\overline{cb} | (\nu b)\overline{ab}$
3. $a(x).\overline{bx} | (\nu b)\overline{ab}$
4. $(\nu a)\overline{ab}.P | \overline{ac}.Q | a(x).R$

- Notice that we use \overline{xz} to denote the process $\overline{xz}.0$.
- We will also use $a(x)$ to denote the process $a(x).0$.
Executor Example

To illustrate process declarations and invocations, consider the following executor example:

\[\text{Exec}(x) \triangleq x(y).\bar{y} \]

(2)

\[\Lambda(x) \triangleq (\nu z)(\bar{x}z \mid z.P) \]

(3)

Notice that we use \(a \) and \(\bar{a} \) to denote reading and writing on channel \(a \), where the actual value being written and read is unimportant (i.e., it does not appear in the scope of the reading process.) What matters is that there is a communication over the channel, signaling synchronization or coordination between processes. That is, \(a.P \mid \bar{a}.Q \xrightarrow{\tau} P \mid Q. \)

The process \(\Lambda(x) \) will behave as \(P \) when composed with \(\text{Exec}(x) \).
Replication

Another useful process declaration enables recursive and non-terminating programs to be modeled:

\[!P \triangleq P \mid !P \]

For example, a process, \(P \), that can indefinitely receive values on channel \(a \) can be modelled in the \(\pi \) calculus as:

\[P = !a(x) \]

If \(P \) interacts with another process, \(Q = \tilde{a}y \), which writes a value over channel \(a \), \(P \mid Q \) can be unfolded as follows:

\[
\begin{align*}
P \mid Q &= !a(x) \mid \tilde{a}y \equiv (a(x) \mid !a(x)) \mid \tilde{a}y \equiv (a(x) \mid \tilde{a}y) \mid !a(x) \\
&\frac{\tau}{0} \mid !a(x) \equiv !a(x) = P
\end{align*}
\]
Reference Cell in the \(\pi \) calculus

A reference cell can be defined in the \(\pi \) calculus as follows:

\[
\begin{align*}
\text{Ref}(g, s, i) & \triangleq (\nu l)(\bar{l}i \mid \text{GetServer}(l, g) \mid \text{SetServer}(l, s)) \\
\text{GetServer}(l, g) & \triangleq !g(c).l(v).(\bar{c}v \mid \bar{l}v) \\
\text{SetServer}(l, s) & \triangleq !s(c, v').l(v).(\bar{c} \mid \bar{l}v')
\end{align*}
\]

The following is an example process expression representing a client of the reference cell:

\[
(\nu c)\bar{s}(c, v).c.(\nu d)\bar{g}d.d(e).P
\]

In this example, process \(P \) will eventually receive the value of the reference cell over channel variable \(e \). If no other processes are interacting with the cell, it will receive the value \(v \).