Adjacency Data Structures

material from Justin Legakis

Last Time?

» Simple Transformations

slalgs i

Projective

* Classes of Transformations

* Representation
— homogeneous coordinates

» Composition #| [abed
. y|_|e £ nlly
— not commutative i ok 1|z
: 1 00 01 1 o | /" projoction plano
* Orthographic &

Perspective Projections

Today

* Surface Definitions

+ Simple Data Structures

* Fixed Storage Data Structures

* Fixed Computation Data Structures

* Mesh Simplification

Today

* Surface Definitions
— Well-Formed Surfaces
— Orientable Surfaces
— Computational Complexity
+ Simple Data Structures
* Fixed Storage Data Structures
* Fixed Computation Data Structures
* Mesh Simplification

Well-Formed Surfaces

* Components Intersect "Properly"

— Faces are: disjoint, share single Vertex, or
share 2 Vertices and the Edge joining them

— Every edge is incident to exactly 2 vertices
— Every edge is incident to exactly 2 faces
» Local Topology is "Proper"

— Neighborhood of a vertex is homeomorphic to a disk
(permits stretching and bending, but not tearing)

— Called a 2-manifold

— Boundaries: half-disk, "manifold with boundaries"
* Global Topology is "Proper"

— Connected

— Closed
— Bounded -

Orientable Surfaces?

i

Closed Surfaces and Refraction

* Original Teapot model is not "watertight":

intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base

* Requires repair before ray tracing with refraction

Henrik Wann Jensen

Computational Complexity

* Adjacent Element Access Time
— linear, constant time average case, or constant time?
— requires loops/recursion/if ?
* Memory
— variable size arrays or constant size?
* Maintenance
— ease of editing
— ensuring consistency

Questions?

Today

List of Polygons:

3,-2,5), (3,6,2), (-6,2,4)
2,2,4), (0,-1,-2), (9,4,0), (4,2,9)
1,2,-2), (8,8,7), (-4,-5,1)

(
(
(
(=8,2,7), (=2,3,9), (1,2,-7)

3

Surface Definitions
» Simple Data Structures
— List of Polygons
— List of Edges
— List of Unique Vertices & Indexed Faces:
— Simple Adjacency Data Structure
« Fixed Storage Data Structures
* Fixed Computation Data Structures
* Mesh Simplification

List of Edges:

(3,6,2), (-6,2,4)
(2,2,4), (0,-1,-2)
(9,4,0), (4,2,9)
(8,8,7), (-4,-5,1)
(-8,2,7), (1,2,-7)
(3,0,-3), (=7,4,-3)
(9,4,0), (4,2,9)
(3,6,2), (-6,2,4)

(

=3,0,-4), (7,-3,-4)

List of Unique Vertices & Indexed Faces:

Problems with Simple Data Structures

Vertices: 1, -1, -1)
1, -1, 1)
-1, 1, -1)
1, 1, 1)
, -1, -1)
, -1, 1)

Faces:

® - o o
ENIRC, IS N Re)

* No Adjacency Information
* Linear-time Searches

Structured Unstructured

* Adjacency is implicit for structured meshes, but
what do we do for unstructured meshes?

Mesh Data

Simple Adjacency

* So, in addition to:
— Geometric Information (position)
— Attribute Information (color, texture,
temperature, population density, etc.)
» Let’s store:
— Topological Information (adjacency, connectivity)

» Each element (vertex, edge, and face) has a list of
pointers to all incident elements

¢ Queries depend only on local complexity of mesh
« Data structures do not have fixed size
» Slow! Big! Too much work to maintain!

2o~

Questions?

Today

* Surface Definitions
+ Simple Data Structures
* Fixed Storage Data Structures
— Winged Edge (Baumgart, 1975)
* Fixed Computation Data Structures
* Mesh Simplification

Winged Edge (Baumgart, 1975)

» Each edge stores pointers
to 4 Adjacent Edges
 Vertices and Faces
have a single pointer
to one incident Edge

Left™NV-TOP_ 4 ohe-

F_Right

)

 Data Structure Size? V_sottom
Fixed %\

» How do we gather all faces m e |t
surrounding one vertex? oomone | [[eace ’m
Messy, because there s, | | e, || s,
1S NO COﬂSlS:tCl]t way VERTEX [cape | eago FACE
to order pointers \@

EDGE

Today

 Surface Definitions

 Simple Data Structures

* Fixed Storage Data Structures

* Fixed Computation Data Structures
— HalfEdge (Eastman, 1982)
— SplitEdge
— Corner
— QuadEdge (Guibas and Stolfi, 1985)
— FacetEdge (Dobkin and Laszlo, 1987)

HalfEdge (Eastman, 1982)

» Every edge is represented by two directed

HalfEdge structures HITHAN
+ Each HalfEdge stores: %—‘,
— vertex at end of]
directed edge E 13
— symmetric half edge Wkt |
— face to left of edge %‘1
- points to the 7
HalfEdge counter-clockwise [+
around face on left AU
« Orientation is essential, but 2—¢
can be done consistently! dln

HalfEdge (Eastman, 1982)

HalfEdge (Eastman, 1982)

* Loop around a Face:
HalfEdgeMesh: :FaceLoop (HalfEdge *HE) {
HalfEdge *loop = HE;
do {
loop = loop->Next;
} while (loop != HE);
}

* Loop around a Vertex:
HalfEdgeMesh: :VertexLoop (HalfEdge *HE) {
HalfEdge *loop = HE;
do {
loop = loop->Next->Sym;
} while (loop != HE);

« Starting at a half edge, how do we find:

the other vertex of the edge?
the other face of the edge?

the clockwise edge around
the face at the left?

all the edges surrounding
the face at the left?

all the faces surrounding
the vertex?

HalfEdge (Eastman, 1982)

 Data Structure Size?
Fixed
* Data:
— geometric information stored at Vertices
— attribute information in Vertices, HalfEdges, and/or Faces
— topological information in HalfEdges only!
* Orientable surfaces only (no Mobius Strips!)

* Local consistency everywhere implies global
consistency

¢ Time Complexity?
linear in the amount of information gathered

SplitEdge Data Structure:

=
.

7
..
)

dn7 =

b
min

iy
o~ el

» HalfEdge and SplitEdge are dual structures!

Corner Data Structure:

» The Corner data structure is its own dual!

SplitEdgeMesh: :FaceLoop () = HalfEdgeMesh::VertexLoop ()
SplitEdgeMesh: :VertexLoop () = HalfEdgeMesh::FaceLoop ()

Today

* Surface Definitions
+ Simple Data Structures
* Fixed Storage Data Structures

* Fixed Computation Data Structures
— HalfEdge (Eastman, 1982)
— SplitEdge
— Corner
— QuadEdge (Guibas and Stolfi, 1985)
— FacetEdge (Dobkin and Laszlo, 1987)

* Mesh Simplification

QuadEdge (Guibas and Stolfi, 1985)

* Consider the Mesh and its Dual simultaneously
— Vertices and Faces switch roles, we just re-label them
— Edges remain Edges
* Now there are eight ways
to look at each edge
— Four ways to look
at primal edge
— Four ways to look
at dual edge

QuadEdge (Guibas and Stolfi, 1985)

* Relations Between Edges: Edge Algebra

* Elements in Edge Algebra:
— Each of 8 ways to look at each edge

* Operators in
Edge Algebra:

— Rot: Bug rotates 90 degrees to its left
— Sym: Bug turns around 180 degrees
— Flip: Bug flips up-side down
— Onext: Bug rotates CCW about

its origin (either Vertex or Face)

QuadEdge (Guibas and Stolfi, 1985)

» Some Properties of Flip, Sym, Rot, and Onext:
— eRot*=e
— eRot?#e
— eFlip?=¢
e Flip Rot Flip Rot = ¢
e Rot Flip Rot Flip=¢
— ¢ Rot Onext Rot Onext = e
¢ Flip Onext Flip Onext = ¢

¢ Flip! = e Flip

— ¢ Sym = e Rot?

— eRot!'=eRot?

— eRot!' = ¢ Flip Rot Flip

e Onext™! = e Rot Onext Rot
e Onext ! = e Flip Onext Flip

QuadEdge (Guibas and Stolfi, 1985)

* Other Useful Definitions:
— e Lnext = e Rot!' Onext Rot
— e Rnext = e Rot Onext Rot!
— e Dnext = e Sym Onext Sym!

e Oprev = ¢ Onext!' = e Rot Onext Rot
— e Lprev = ¢ Lnext! = ¢ Onext Sym
— e Rprev = e Rnext! = e Sym Onext
— e Dprev = e Dnext"! = e Rot™! Onext Rot

* All of these functions can be
expressed as a constant number of
Rot, Sym, Flip, and Onext operations
independent of the local topology and
the global size and complexity of the mesh.

FacetEdge (Dobkin and Laszlo, 1987)

* QuadEdge (2D, surface) — FacetEdge (3D, volume)
» Faces — Polyhedra / Cells

* Edge — Polygon & Edge pair
o2 el aDest

a() D
o e 3 I]
3 fI r (-,)_Oaphp
e O._.() 12 O‘O aSym

o4

es —
a0rg aOnext

Questions?

Today

¢ Surface Definitions

* Simple Data Structures

* Fixed Storage Data Structures

» Fixed Computation Data Structures
* Mesh Simplification

(@) Base mesh 77 (150 faces) (b) Mesh ™ (300 faces) (e Mesh A/ (1,000 faces) (d) Original 1= (13,546 faces)

Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

Progressive Meshes

* Mesh Simplification

— vertex split / edge collapse

— geometry & discrete/scalar attributes
— priority queue

Level of Detail

— geomorphs

* Progressive Transmission
* Mesh Compression

¢ Selective Refinement
— view dependent

Selective Refinement

it

e
e

i

| /

7N =]
VN =
Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ctte regions, and projected screen size of faces (7,438 faces).

Preserving Discontinuity Curves

() M7 (1,000 faces)

) € =9.0 (192 faces) (@) € = 2.75 (1.070 faces) (D e= 0.1 (15,812 faces)
Tigure 12: Approximations of a mesh ¥ using (b-¢) the PM representation, and (d-1) the MRA scheme of Eck et al. 7). As demonstrated,
MRA camnot recover 3 exactly, camnot deal effectively with suface creases, and produces approximating meshes of inferior quality

Other Simplification Strategies

» Remove a vertex & surrounding triangles,
re-triangulate the hole

* Merge Nearby Vertices < o
— will likely change > '

the tOpOlOgy, .. Before After

Tigure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconneeted sections of the model are joined. The dashed
line indicates the fwo vertices being contracted fogether.

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

When to Preserve Topology?

Figure 3: On the left is a regular grid of 100 closely spaced cubes.
In the middle, an approximation built using only edge contractions
demonstrates unacceptable fragmentation. On the right, the result
of using more general pair contractions to achieve aggregation is an
approximation much closer to the original.

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

Quadric Error Simplification

* Contract (merge) vertices v; and v; if:
- (v; v;) is an edge, or
—|v;i=v; || <t where ¢ is a threshold parameter
» Track cummulative error by summing 4x4
quadric error matrics after each operation:

am = 3 oToe™
peplanes(v)
- PE‘,;;(‘)VT(""T)" Garland & Heckbert,
_ J(5 K,,>v ‘Surface Slmpllﬁcanor} .
pertamess) Using Quadric Error Metrics
@ ab ac ad SIGGRAPH 1997
Ko_opTe | @b B e bd“
»=PP = be & ed

LZ; bd cd dzj

Judging Element Quality

* How “equilateral” are the elements?
* For Triangles?
— Ratio of shortest to longest edge
— Ratio of area to perimeter?
— Smallest angle

— Ratio of area to area of
smallest circumscribed circle

¢ For Tetrahedra?
— Ratio of volume? to surface area’
— Smallest solid angle

— Ratio of volume to volume of |-
smallest circumscribed sphere

Readings for Tuesday (1/20) pick one
e 4

* "Free-form deformation of solid
geometric models", Sederberg
& Parry, SIGGRAPH 1986

* "Teddy: A Sketching
Interface for 3D
Freefrom Design",
Igarashi et al.,
SIGGRAPH 1999

* Post a comment or question on the LMS
discussion by 10am on Tuesday

