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Abstract 
In this paper we introduce the concept of the global reflection distribution function which allows concise 
formulation of the global illumination problem. Unlike previous formulations it is not geared towards any 
specific algorithm. As an example of its versatility we derive a Monte Carlo rendering algorithm that seam- 
lessly integrates the ideas of shooting and gathering power to create photorealistic images. 
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1. Introduction 

The global illumination problem consists of determining 
the lighting functions for a given scene by simulating 
the transport of light throughout the scene. The starting 
point for finding a physically correct solution consists 
in identifying the quantities and properties that are rele- 
vant to the problem. Using these notions a mathematical 
model can be constructed, which formally expresses the 
physical laws of illumination, reflection, refraction and 
everything else encompassing the transport of light. The 
complexity of the problem most often forces simplifying 
assumptions. The final step is to derive practical algo- 
rithms to solve the mathematically formulated problems. 
A concise mathematical formulation allows standard an- 
alytical and numerical techniques to be applied to solve 
the problem. In computer graphics the solution of the 
global illumination problem is mostly used to create a 
realistic rendering of the scene. In this case the solution 
can be tuned for one or more specific views. 

In the following paragraphs we will introduce a new 
formulation of the global illumination problem. The 
medium is assumed to be non-participating; only sur- 
faces interact with light, by reflection, refraction and ab- 
sorption. We will then present a new rendering algorithm 
and show how it can be derived from the mathematical 
formulation. 

2. Related Work 

An important milestone in the development of the global 
illumination theory for computer graphics was the in- 
troduction of the radiosity method by Goral et al.1. 
Originally developed within the field of heat transfer 
it is based on the energy equilibrium between diffuse 
emitters and reflectors of radiative energy such as heat 
or light. Although restricted to the simulation of diffuse 
lighting effects it presents a sound physical model. Dis- 
cretisation of the scene in patches or elements results 
in a mathematical model consisting of a set of linear 
energy equations. The coefficients are determined by the 
geometry and the reflective properties of the scene, the 
right-hand side coefficients are the self-emitted radiosi- 
ties of the elements and the unknowns are the radiosities 
of the elements. Various algorithms have been presented 
to solve this set of equations. The radiosity solution is 
view-independent. Smits et al.2 introduced the notion 
of importance and adapted the radiosity algorithm to 
tune the solution with respect to the final rendering 
parameters. 

The rendering equation as proposed by Kajiya3 pro- 
vides a more general mathematical formulation of the 
problem that is no longer restricted to diffusely emitting 
surfaces. It can be expressed as a Fredholm equation 
of the second kind where the kernel i s  determined by 
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Figure 1: Explanation of the symbols used in the rendering equation and the potential equation respectively. 

the geometry and the reflective properties of the scene. 
The unknown function is the radiance across the sur- 
faces of the scene. Path tracing is presented as a Monte 

strongly reduce the storage requirements and the com- 
putational times. 

Carlo algorithm that solves the rendering equation. The 
idea is to sample the flux through the pixels, gather-  3. The Rendering Equation and the Potential Equation 
ing light by following all light paths back to the light 
sources. As such it is entirely view-dependent. Various 
other algorithms are based on the same principle4-9. 

Pattanaik10-12 recently presented the potential equa- 
tion, which is adjoint to the rendering equation. The 
notions of radiance and potential capability, and the 
set of equations form a mathematical framework that 
explains all common global illumination algorithms. He 
proposed an accompanying Monte Carlo particle trac- 
ing algorithm that shoots light particles from the light 
sources13. The scene is discretised into elements at which 
received and diffusely emitted power is accumulated dur- 
ing the simulation. In a second view-dependent pass, 
path tracing or distribution ray tracing is used to ren- 
der the scene, adding specular effects to the already 
computed diffuse components. 

Most other algorithms that solve the global illu- 
mination problem are similarly based on two-pass 
methods14-17. They compute diffuse lighting compo- 
nents in a first extended radiosity pass and specular 
lighting components in a second view-dependent pass. 
Some algorithms try to represent the complete radiance 
function instead of only its diffuse component in order 
to find a view-independent solution. The main prob- 
lem with this approach is the huge amount of storage 
that is required to represent the lighting function. Aup- 
perle and Hanrahan18 and Christensen et al.19 tried to 
meet this problem using the notion of directional impor- 
tance, explained in a mathematical framework similar to 
Pattanaik's. Their deterministic algorithms concentrate 
on important contributions to the solution and thereby 

We briefly recall the rendering equation and the po- 
tential equation which were presented by Pattanaik10-12 

as a set of adjoint equations, both describing the global 
illumination problem from a different point of view. The 
rendering equation expresses the emitted radiance at a 
given point on a surface and in a given direction as the 
sum of the self-emitted radiance and of the reflected ra- 
diance resulting from incoming light from other surfaces 
(Figure 1): 

where : 

the emitted radiance at point x along 
direction 

the self-emitted radiance at point x along 
direction 

the bi-directional reflection distribu- 
tion function (brdf) at point x for light coming in 
from direction and going out along direction 

y = the point that 'sees' point x along direction 
the absolute value of the cosine of the 

angle between the direction and the normal to the 
surface at point x,  

the set of incoming directions around point x 
(a sphere or a hemisphere), 

a differential angle around [sr]. 

The flux of light leaving a given set S, consisting of 
pairs of points on a surface and directions around these 
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points in which one is interested, can then be expressed 
by : 

where: 
belongs to the set S, and 0 

otherwise, 
A = the set of all surface points of the given scene, 

a differential surface area element around point 
x on surface A.  

Sets S in which one is commonly interested are the 
points and directions associated with the patches in a 
scene for radiosity methods, ana me points ana direc- 
tions seen through the pixels for ray tracing techniques. 

The potential capability is the dual of the 
radiance function It is defined as the differen- 
tial flux through a given set S of points and directions, 
resulting from a single unit of emitted radiance from 
point x along direction Although not presented as 
such earlier, this definition can be expressed formally as: 

The potential equation that governs the potential ca- 
pability expresses that the potential of a point and a 
direction to light the given set results from a direct con- 
tribution if the pair belongs to the set and from an 
indirect contribution through reflection on the surface 
to which it points (Figure 1). Formally: 

where: 
y = the point seen by point x along direction 

the set of outgoing directions around point y. 

tial capability: 
The flux can now be expressed in terms of the poten- 

4. The Global Reflection Distribution Function 
From the previous paragraph it is clear that the radi- 
ance function is defined with respect to a fixed 
self-emitted radiance function and that the 
potential function is defined with respect to 
a fixed function corresponding to the set S. 
The relationship between and is not 

Figure 2: The global reflection distribution function gives 
a measure o f  the fraction of the radiance emitted at 
point x along direction that is eventually output at 
point y along direction through all possible reflections 
throughout the scene. 

defined by the expressions, making it difficult to com- 
bine them into some model or algorithm. We therefore 
propose the notion of the global reflectance distribution 
function (grdf) which is defined with respect to a given 
scene but which does not depend on any particular emis- 
sion function such as nor on a fixed set such 
as S. 

4.1. Definition 

The definition bears some similarity to the approach 
often taken in system theory, where a system is studied 
on the basis of its response to some input signal. The 
grdf expresses the differential amount of radiance leaving 
point y along direction as result of a single unit 
of emitted radiance from point x on a surface along 
direction (Figure 2).  Formally: 

The grdf may be considered as a generalisation of the 
brdf. While the latter only specifies the local behaviour 
of light reflecting at a single surface, the former defines 
the global illumination effects of light reflecting through 
a complete scene. Note that the function is defined in 
terms of radiances leaving the surfaces, unlike the brdf 
which is commonly expressed in terms of both incoming 
and outgoing radiances. It is theoretically defined over 
the entire space of points and directions, but in the 
following paragraphs we will only use it at the surfaces 
of the scene themselves. Because we assume that there is 
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Figure 3 :  Explanation o f  the symbols used in the two adjoint equations that define the global reflection distribution 
function. 

no participating medium the function is constant when 
moving x along direction and y along direction 
between two surfaces, by virtue of the invariance of the 
input and output radiances along these directions. 

4.2. Adjoint Equations Defining the Grdf 

The function is specified by a set of adjoint integral 
equations. Firstly, one can look at the behaviour of the 
function for a fixed Similarly to the derivation 
of the rendering equation, the radiance at is the 
result of two contributions. If both pairs of points and 
directions are equal the input radiance contributes ai- 
rectly to the output radiance. In this case the output 
radiance is not differential but finite, so that the fraction 
is a Dirac impulse. The second contribution results from 
the reflection of incoming radiance at point y which ar- 
rives from points z ,  possibly through multiple reflections 
throughout the scene (Figure 3). This can be expressed 
formally as: 

output radiance. Once again, if both pairs of points 
and directions are equal the input radiance contributes 
directly to the output radiance, which is expressed by 
the Dirac impulse. The input radiance can also con- 
tribute indirectly, through reflection in all directions 
around point z which is seen by point x in the di- 
rection (Figure 3). This results in another recursive 
equation: 

It is extremely interesting to see that these equations 
are fully equivalent, by virtue of the bi-directional na- 
ture of light. The fraction of the radiance emitted from 
one point that is received by another point equals the 
fraction that would be received if the roles of the emit- 
ter and the receiver exchanged were, thus reversing the 
paths the light follows. This property can be expressed 
elegantly in terms of the grdf: 

where is the point seen by point x along direction 
and the point seen by point y along direction as 
shown in Figure 4. This expression is equivalent to the 
well-known reciprocal property of the brdf; 

where is the Dirac impulse which is 0 
if but which integrates to 1 over the 
domain of for a given and vice versa: 

Substitution of these properties in both sides of the 
second adjoint equation (2) yields: 

Alternatively, one can look at the behaviour of the 
function for a fixed This viewpoint resembles 
the approach of the potential equation. The question 
here is how radiance at can contribute to the 

Renaming the variables appropriately results in the 
first adjoint equation (1). It implies that any of the two 

© The Eurographics Association 1994 



E. Lafortune and Y. Willems / A Theoretical Framework for Physically Based Rendering 101 

Figure 4: Convention for  naming the opposite points in 
the reciprocal property o f  the grdf. 

adjoint equations in combination with the reciprocal 
property is sufficient to define the grdf unambiguously. 

4.3. Flux in Terms of the Grdf 
Now that the grdf has been defined we can use it to 
determine the flux through the given set of points and 
directions S (defined by and with respect to 
the given self-emitted radiance function From 
the definition of the grdf and the expression of the flux 
in terms of radiances we can derive: 

Note that it is only at this time that the functions 
and come into play; the grdf itself 

is totally independent of them. If required, it remains 
possible to express the radiance function with respect to 
a given and the potential function with respect 
to a given in terms of the grdf: 

The occurrence of a Dirac impulse in both of the 
adjoint equations may seem a bit awkward for practical 
use in algorithms. Luckily one will always want to in- 
tegrate the grdf in order to obtain some flux. Therefore 
it is an advantage rather than a disadvantage, since in- 
tegrating a Dirac impulse is extremely easy by virtue of 
its definition. 

5. Bi-Directional Path Tracing 
The light sources in a scene and the eye point of the 
viewer have always been identified as being very im- 

Figure 5: A schematic representation of  the bidirectional 
path tracing algorithm. 

portant for solving the global illumination problem and 
creating a realistic rendering. Some algorithms such as 
ray tracing are entirely built around the importance of 
the viewing point. Other algorithms such as the pro- 
gressive radiosity method put a primary emphasis on 
the contributions of the light sources. Ideally one would 
want an algorithm which takes into account the impor- 
tance of both the light sources and the viewing point. In 
another paper20 we have presented bi-directional path 
tracing as a Monte Carlo algorithm which treats light 
sources and the viewing point on an equal basis. We will 
now demonstrate how it can be derived mathematically 
from the theory presented in the previous paragraphs. 

5.1. Outline of the Algorithm 
The algorithm differs from distribution ray tracing or 
path tracing in its computation of a primary estimator 
for the flux through each pixel. Each sample consists in 
tracing a pair of random walks through the scene: a light 
path starting from a light source and an eye path starting 
from the eye point. All hit points on the respective 
particle paths are then connected by means of shadow 
rays. For each shadow ray a contribution is computed 
and added to the flux of the pixel in question. As a 
result the lighting contributions are estimated by casting 
shadow rays from the eye paths, not only to the primary 
light sources themselves as in classical path tracing, but 
implicitly also to important secondary, tertiary,. . . light 
sources (Figure 5). 

5.2. Mathematical Derivation 
The algorithm can be derived from the mathematical 
model presented above, using classical Monte Carlo 
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methods. The model consists of a set of two adjoint 
equations (1 and 2) ,  which have been proven to be 
equivalent, and an expression for the flux (3). Our goal 
is to combine the ideas of shooting and gathering power. 
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where : 

5.2.1. Combining the Adjoint Equations 

For convenience we will first abbreviate the adjoint in- 
tegral equations (1) and (2) using integral operators 
and The respective equations then look as follows: 

This expression will be used later to effectively evalu- 
ate an estimate for the flux. 

5.2.2. Estimating the Flux 

We will now show how to find an estimate of the flux 
for each pixel in turn. The starting point is the original 
equation (3) expressing the flux. The selected pixel de- 
termines the function           The function is l for 
points on the surfaces and respective directions which 
contribute directly to its flux, and 0 otherwise. The given 
lighting conditions determine the function The 
integrand contains Dirac impulses which have to be eval- 
uated separately; we will take this into account later. 

In order to solve this integral using Monte Carlo 
integration, the variables of the integrands and 

have to be sampled over their respective domains. 
The choice of a probability density function (pdf)  is 
free, but the principle of importance sampling states 
that the variance of the stochastic process will be lower 
when the pdf follows the function to be integrated more 

where the integral operators and are defined as: 

For the purpose of integrating the ideas of shooting 
and gathering power these equations have to be com- 
bined. The most straightforward way to do SO is to take 
a linear combination of them. This yields the following 
starting point: 

closely. On the basis of the expression for the flux (3) 
we therefore select samples and according to the 
following  pdf (Figure 6): 

where the sum of the weights The solution 
of this integral equation can be found by recursively 
filling in the left-hand side term into the two terms with 
the integral operators on the right-hand side. Noting 
that one can vary the weights at each recursive step 
and that both integral operators are interchangeable the 
solution can eventually be written as a Neumann series 
of the form: 

where L is the normalisation factor: 

From a physical point of view this pdf ensures that more 
light particles are shot from bright emitters and in bright 
directions, rather than distributing them uniformly and 
weighting their contributions to the flux afterwards. In 
the same vein we select samples and according 
to the following  pdf (Figure 7): 

From a physical point of view expresses the 
number of reflections the light undergoes when travelling 
from to The weights are subject to 
the following constraints: 

where G is the normalisation factor: 

The appropriate weights for the samples can be de- 
rived on the basis of these pdfs using the template for 
importance sampling: 

On the basis of equation (3) the flux can then be 
written as: 

© The Eurographics Association 1994 



E. Lafortune and Y. Willems / A Theoretical Framework for Physically Based Rendering 103 

Figure 6: Sampling and on the basis of the self- 
emitted radiance of light sources. 

Figure 8: Naming conventions fo r  the points and direc- 
tions and to specify 
the light path and the eye path respectively. In this exam- 
ple equals 3 and equals 2. 

Figure 7: Sampling and with respect to the pixel 
under consideration. 

Without taking into account the fact that the grdf 
contains Dirac impulses the resulting primary estimator 
for the flux looks like: 

5.2.3. Estimating the Grdf 

The estimator of the flux contains the grdf 
evaluated for the specific points and 

and directions and Neither the function 
nor this particular value are known, so the value has 
to be estimated in its turn. Integral equation (4) for 

which has been derived earlier forms the 
basis for another Monte Carlo process. According to 
standard Monte Carlo theory the particular value can 
be estimated by performing a random walk. Because 
the equation contains two integrals there are actually 
many recursive random walks, intertwined with each 
other. By re-using the samples this can be reduced to 

two stochastically determined paths. These are written 
as : 

for the light path, where is the 
point seen by point along direction and 

for the eye path, where is the 
point that sees point along direction 

Using this notation the random samples which 
have to be selected to compute the two integrals of 

are and respectively. These 
variables determine and unambiguously (Fig- 
ure 8). The so-called subcritical pdf for    is again 
chosen according to the principle of importance sam- 
pling with respect to equation (1) (Figure 9): 

It is subcritical because it does not integrate to 1 over 
all possible angles at least for physically valid brdfs. 
The actual value of the integration (the overall reflectiv- 
ity for this specific incident angle) gives the chance that 
the random walk is continued, which ensures that the 
random walk terminates. 

The subcritical pdf for is chosen in the same 
way, with respect to equation ( 2 )  (Figure 10): 

Note that these spdfs can be made identical simply by 
renaming the variables and using the reciprocal property 
of the brdf. This property implies that both random 
walks can be performed by a single algorithm. 
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Figure 9: Sampling according to the brdf of the 
surface at point fo r  the incoming direction 

Figure 10: Sampling according to the brdf of the 
surface at point for  the incoming direction 

On the basis of the selected spdfs and without taking 
into account the special character of the Dirac impulses 
the primary estimator for would look 
like : 

5.3. Evaluating the Estimate of the Flux 
Now that we have shown how the stochastic variables 
for the integrals and for the random walks are selected 
we will actually evaluate the final result. Because of the 
special nature of the Dirac impulses it is easier to eval- 
uate expression (5) for the flux. The infinite Neumann 
series of the flux becomes a finite sum for the estimate 
of the flux by virtue of the finite random walks: 

The Dirac impulses can be removed from the expres- 

sions using their definitions. Eventually three cases have 
to be distinguished when evaluating the estimates 

i = 0, j = 0. From a physical point of view this term 
is an estimate for the flux received from a light source 
that is directly seen through the pixel under consid- 
eration. Taking into account the previously selected 
pdfs for and the estimate becomes: 

i = 0, j > 0. This term is an estimate for the flux 
that reaches the eye from the light source through j 
reflections on the eye path, as in classical path trac- 
ing. Taking into account the previously selected pdfs 
for the corresponding estimate be- 
comes: 

where : 

and where the visibility function is 1 if point 
x ‘sees’ point y (along direction The visibility 
function and the fraction on the last line result from 
a transformation from spherical coordinates to coor- 
dinates on the surfaces in the scene. In practice the 
visibility function is evaluated by casting a shadow 
ray between the two points and checking whether it 
is intersected by an object in the scene. 

This term is an estimate for the flux 
that reaches the eye from the light source, through i 
reflections on the light path and j reflections on the 
eye path. Again taking into account the previously 
selected pdfs for the 
corresponding estimate becomes: 

6. Results 
We have implemented the bi-directional path tracing 
algorithm as described above. The program has been 
written in the programming language C on an IBM 
RS/6000 Model 320. It is based on the library routines 
of the public domain ray tracing program ‘Rayshade’. 
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6.1. Selection of the Weights 
The mathematical derivation in the previous paragraphs 
shows that one is free to choose the various weights for 
the contributions as long as they comply with the given 
constraints. The alternatives are obviously endless. We 
present some notable examples: 

= 1 for i = 0, and 0 otherwise. 
One can easily verify that this set of weights yields 
the classical path tracing algorithm. The generic bi- 
directional path tracing algorithm therefore also cov- 
ers this technique. This instantiation does not fully 
exploit the potential of our method however, since 
much information is left unused. 

This selection of the weights results in an extended 
path tracing algorithm. It can be explained as follows. 
The estimate of the incoming radiance at each point 
on the eye path is found in two distinct ways: by 
sampling the incoming angles on the basis of the brdf 
and by sampling the points on the eye path. The 
former contribution is assigned a weight W ,  the latter 
weight 1 - W .  The actual value of the weight may be 
set to 0.5 for instance; it is always rather arbitrary. 

for i = 0, and otherwise. 

for i = 0, 0 for j = 0 and 
otherwise. 

This selection of weights is similar to the previous 
one; only now the last degree of freedom has been 
put to good use. The idea is that for specular surfaces 
one would rather rely on the estimate found by fol- 
lowing the eye path. For diffuse surfaces the estimate 
found through the contributions of the light path is 
more likely to be accurate. Therefore the weight 
is chosen proportional to a measure of the degree of 
specularity of the surface at point on the eye path. 
For highly specular surfaces it approaches 1, for dif- 
fuse surfaces it goes to 0. Tests on practical scenes 
have shown that this technique greatly improves the 
quality of the images, especially when rendering scenes 
containing mirrors. 

6.2. Comparison with Classical Path Tracing 
We have performed some tests in order to compare our 
bi-directional path tracing algorithm with classical path 
tracing. The main amount of work in both algorithms 
consists in performing ray intersection tests. So as to 
obtain a fair comparison approximately the same num- 
bers of rays are used by the respective algorithms in 
each test. Table 1 gives an overview of the results. Both 
implementations use optimised sampling strategies such 
as importance sampling, stratified sampling and Rus- 
sian roulette. Neither of the implementations performs 
adaptive sampling of the pixels. 

The scene consists of coloured diffuse walls, a slightly 

Table 1: Overview of the test results. 

specular floor and a mixture of opaque and transpar- 
ent objects. In test A the scene is directly illuminated 
from above. Both algorithms accurately render typical 
global illumination effects such as diffuse and glossy 
reflections, soft shadows and colour bleeding. There is 
little difference visible between the resulting images. In 
test B the scene is mostly indirectly illuminated by two 
light sources against the walls. For this typical interior 
lighting configuration the bi-directional algorithm pro- 
duces visibly less noise for the same amount of work. 
In order to further reduce the noise more samples are 
required per pixel though. 

7. Conclusion 

In this paper we have introduced the notion of global 
reflection distribution function and reformulated the 
global illumination problem in terms of this function. 
This results in two adjoint integral equations which de- 
fine the grdf for a given scene. We have proven that these 
equations are equivalent by virtue of the bi-directionality 
of light. A simple integral containing the grdf expresses 
the flux through a given set of points and directions, 
with respect to a given set of light sources. We believe 
that this fresh point of view, along with its well-founded 
theoretical basis, may lead to new and better insights in 
the theory of global illumination 

The practical use of the formulation has been demon- 
strated by deriving a new Monte Carlo algorithm from 
it using standard mathematical techniques. This bi- 
directional path tracing treats the viewpoint and the light 
sources on an equal basis. The technique is very gen- 
eral. Although convergence still is rather slow, practical 
results show that it outperforms standard path tracing 
for scenes where indirect lighting effects predominate. 
Classical optimised sampling techniques such as impor- 
tance sampling, stratified sampling and Russian roulette 
further improve the convergence of the algorithm. 
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Figure A: A directly illuminated scene rendered using path tracing and bidirectional path tracing respectively. Little 
difference between the two images is visible. 

Figure B: A n  indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The 
latter method results in visibly less noise for the same amount of work. 
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