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Abstract 
 A method for the real-time simulation and rendering of fluids in 2D space. The technique 

itself is targeted at video game applications, with a focus on portability and ease of integration. 

Most of the fluid simulation and rendering is handled by fragment shaders running on the GPU, 

making integration fairly straightforward in a number of deployment settings. Running on the 

GPU also enables faster performance and frees up the CPU to perform other operations.  

Introduction 
 Fluids are a common desired effect in video games. They can take the form of liquids like 

water, atmospheric effects like smoke, and special effects like explosions. Often times these 

effects, particularly special effects, are approximated with particle systems. While excellent for 

performance, particle systems are typically disconnected from the actual game world, that is, 

they are not interactive and do not react to the player. 

 In order to create compelling effects and environmental elements, things need react 

realistically to user interactions. Water should splash when stepped in. Smoke should distort 

when walked through. The list goes on. 

 In this project, I propose a simplified implementation of a liquid simulation and 

rendering technique for 2D applications. 2D space is particularly attractive for things like fluids 

because rendering is significantly simpler in 2D space than 3D. For this project, the simulation 

and rendering are essentially the same thing and take place on the same texture memory on the 

GPU. 

 The goal was about keeping things as self-contained as possible, as such, all simulation 

calculations are executed as textures passed through fragment shaders. The heavy use of 

fragment shaders is great in a 2D context due to the fact that I can directly render all results to a 

single quad and render that quad directly to the screen. This keeps things simple and fast. 

 I chose to implement my project in the GameMaker game engine. The engine supports a 

wide array of platforms and is an excellent tool for 2D game development. 

 

 



The Algorithm 
 The algorithm itself is based on taking textures, passing them through a variety of 

fragment shaders, then rendering the results to another texture and passing that new texture 

through another fragment shader. It is essentially an assembly line of textures being moved 

through different fragment shaders. 

 In order to continuously render new frames, 

I needed a sort of double buffer for the 

textures to switch back and forth between so 

I have access to the old frame while writing 

to a new frame. To accomplish this I utilize 

two textures for every component of the 

fluid simulation, and have functions that will 

“swap” the texture pointers so I can alternate 

between them. 

 For the simulation itself, I make use of five 

different properties, each tracked in their 

own texture: temperature, density, pressure, 

velocity, divergence. There is also an extra 

texture for obstacles that will deflect the 

fluid. Temperature, density, pressure, and 

velocity have two textures each since they need to animate with the swapping technique 

discussed earlier. The divergence does not need to and is a single texture. 

 Density represents the location of the fluid. Temperature is how hot it is and affects 

things like buoyancy in fluids like smoke and fire. Pressure is the pressure of each pixel of the 

fluid. Velocity is how fast a pixel of fluid is moving. Divergence is similar to a derivative of 

velocity and reflects how much a single pixel is changing in a given frame. 

 Each of the fluid simulation properties is stored on a texture, where different color 

channels correspond to different variables. The temperature, density, and pressure properties 

only use the red color channel on their textures. Velocity and divergence use two, red for x 

value, and green for y value. 

 

 

 

 

 

Temperature [1 channel]: How hot the fluid at a 

pixel is. 

Density [1 channel]: How dense the fluid at a pixel is. 

Pressure [1 channel]: How compressed the fluid at a 

pixel is. 

Velocity [2 channels]: How fast the fluid at a pixel is 

moving. 

Divergence[2 channels]: How much a pixel at a 

current pixel needs to move to balance out the pressure. 



 The following outlines the steps of the algorithm: 

1. Apply the velocity to itself (advection). 

2. Apply the velocity to the density (advection). 

3. Apply the velocity to the temperature (advection). 

4. Apply buoyancy. 

5. Apply any fluid sources. 

6. Compute divergence. 

7. Compute pressure iteratively. 

8. Apply pressure to velocity. 

 

The concept of advection is at the core of the algorithm. Advection in this context means 

getting things to “move” on the textures. By looking up the velocity at a pixel, I can do a sort of 

backwards lookup to find the pixel where the current pixel “came from” and use the new pixel 

color. Over successive iterations, this results in visual movement. The reason for this backwards 

lookup involves the nature of how GPU fragment shaders work. One cannot change the 

fragment color of a different pixel, that is one cannot say “make the pixel ten units away red.” 

Instead, one must say “the pixel ten units away is red, make this pixel red.” Using this concept of 

advection, I can move pixels around on the textures. Above is the main piece of code for 

advection. There are several constants including a time step size and a dissipation constant. As 

seen by the first three steps of the algorithm, the advection will advance the state of the 

simulation one frame. 

 

 

 

vec2 u = texture2D(gm_BaseTexture, v_vTexcoord).xy -  vec2( 0.5 );  

    vec2 timeS caledStep = u * TimeStep ;  

    vec2 coord = vec2( v_vTex coord.x -  timeScaledStep.x, v_vTexcoord.y + 

timeScaledStep.y );  

    gl_FragColor = vec4( vec3( Dissipation * (texture2D(SourceTexture, 

coord).rgb -  vec3(0.5)) + vec3( 0.5 )), 1.0  );  

 

Advection Code 

TimeStep is how fine each simulation step is. Smaller values take longer but yield better results. 

Dissipation is how much energy is lost ambiently during advection. 

The numerous addition and subtraction of 0.5 is to allow negative values to be stored in the texture 

as discussed in a later section of this report. 



Buoyancy simulates convection currents caused by a difference in temperature within a 

fluid. The equation takes in a constant as well as the difference between the temperature at a 

pixel and the global ambient temperature. A vector indicating the upwards direction is also 

necessary. Buoyancy is the reason I need the temperature texture and the results of the 

buoyancy calculation are applied to the velocity texture. 

 

 

 

Fluid sources are handled in a straightforward matter. In this application, fluids always 

start with zero velocity and with a predefined uniform density and temperature. To create a fluid 

source, one need only draw the shape of the source onto the density and temperature textures 

directly. For instance, to create a circular source of fluid on the screen, draw a circle onto the 

density and temperature textures. Because this is 2D and the simulation and rendering are 

essentially the same thing, I can directly place fluid sources onto the texture and have it 

automatically integrated into the simulation. 

 

 

 

Divergence is a simple operation, and essentially takes a given pixel and looks at the 

neighboring velocities and takes the difference in X and Y velocities. The velocities are combined 

and multiplied against the inverse of the fluid cell size to reflect the total amount of fluid that is 

leaving the cell. The divergence is used for the pressure calculation later.  

HalfInverseCellSize * (vE.x - vW.x + vS.y - vN.y) 

Divergence Equation 

vN, vS, vE, vW are the velocities of north, south, east, west neighboring pixels. 

HalfInverseCellSize is a constant based on the size of fluid cells in the simulation. 

 

Buoyancy equation. 



 Computing pressure is the most intensive part of the algorithm, and requires several 

iterations to refine the results. The actual pressure computation is surprisingly simple, the 

pressure calculation shader basically looks at every pixel and its neighbors, and tries to equalize 

them, using the current pressure and divergence value. The equation is given by the sum of all 

neighboring pressures plus the divergence multiplied by the inverse of fluid cell size. Fluid cell 

size is basically the pixel size of the simulation. Fluids in real life tend to move from areas of high 

pressure to low pressure. By having each pixel try to equalize itself the simulation can slowly 

converge towards an equilibrium, or more accurately, converge towards the pressure needed to 

achieve equilibrium. What is written to the actual pressure texture during the pressure 

computation step is the pressure a pixel “wants” to exert to achieve equilibrium. Spending more 

iterations on this step leads to more accurate results but takes extra time to compute. For 

reference, around 40 iterations will lead to decent results reasonably quickly. 

 Now that pressure is on the texture, I can apply the pressure to the velocity of the fluid. 

This is also fairly intuitive, and to calculate the velocity I simply take the difference in pressure 

between a pixel and its neighbors. The X velocity is determined by getting the difference 

between the east and west pixel pressures, and the Y velocity is determined by getting the 

difference between the north and south pixels. Larger differences mean greater velocities. This 

conversion does involve a constant, GradientScale, to convert between the pressure units and 

velocity units. This is set by the user and can be changed to create “thicker” and “thinner” fluids. 

(pN + pS + pE + pW + Divergence) * InverseCellSize 

Pressure Equation 

pN, pS, pE, pW are the pressures of north, south, east, west neighboring pixels. 

Divergence is the divergence at a given pixel. 

vec2(pE - pW, pN - pS) * GradientScale 

Pressure to Velocity Equation 

pN, pS, pE, pW are the pressures of north, south, east, west neighboring pixels. 

Divergence is the divergence at a given pixel. 

 



Results 

The end results of the application were very promising and would likely benefit from 

more time spent optimizing. The number of textures and texture lookups mean the actual 

performance scales very poorly with higher resolutions. At small 512 x 512 resolutions the 

simulation held a steady 60 frames per second. Increasing that to a larger 1024 x 768 lead to a 

drop to around 30 frames per second. For the simulation on its own this is acceptable, but 

considering the amount of GPU resources it uses, it leaves little room for anything else, limiting 

its usefulness in applications such as games. 

To test the results, a subjective approach was taken. I simply looked at the simulation 

and how it interacted with itself and the obstacle, focusing mostly on how “fluid-like” the 

movement was. The goal of this application was not to create realistic fluids, but rather to create 

fluid-like behavior, so a subjective evaluation was all that was necessary. 

As far as usability, the end result was very positive. Adding obstacles and sources was 

very simple and straightforward. In addition, the performance is not significantly hindered by 

more obstacles or fluid sources. Being a screen space simulation and rendering, all pixels of the 



screen are always being operated on anyway, so adding some extra colors to the textures does 

not carry significant overhead. 

The raw rendering of the final fluid was too dark. I compensated for this by adding 

several post process effects like refraction and bloom. Both went a long way to making the final 

fluid more interesting to look at. Both of these effects of course came with a performance cost, 

but it was marginal compared to the cost of the simulation itself. 

Challenges 
There was a decent amount of existing code 

available to look at for this project. Of course it is never 

as simple as dropping random code into a program and 

having it work.  

Most of the code out there was written in newer 

versions of GLSL. Since I am implementing my project in 

the GameMaker game engine, I only have access to a 

very old version of GLSL ES 1.0 to write my shaders in. As 

a result I had to find workarounds for several things such 

as looking up neighboring pixels. This is not a huge 

problem, but just another thing to have to debug and 

work through. 

GPUs are very fast, but very hard to debug and 

program for. Even though I was doing relatively simple 

things with fragment shaders, everything needs to be correct for things to work at all. Even a 

little mistake will yield undesirable results. While in traditional CPU programming I can use 

console output and debuggers to find the errors, GPU programming does not have nice tools 

 

Things not only spiraled out of control, but 

there seem to be an axis or two missing 

from the movement… 

 

(left) Rectangle as the source shape. (center) Rectangle and circle overlapped as the source shape. (right) Rectangle 

as the obstacle shape. 



like that. In addition, GPUs will rarely crash at runtime, this means errors tend to spiral out of 

control and yield results that are hard to interpret and analyze. Most of my time was spent 

staring at many blocks of relatively small and simple code wondering why nothing is working. 

Sometimes the mistake was small like bad order of operations, other times they were more 

abstract issues like negative values, which brings me to my next point. 

Probably the most time consuming issue to 

deal with was storing negative values in textures. It 

took a while to first get things to work, but when I 

did, the fluid only moved in one direction on each 

axis. After spending several hours combing through 

the code and trying to debug shaders with hacky 

color outputs, I discovered GameMaker could not 

store negative values in textures. A reasonable 

limitation to be sure, but a problem for my project. I 

kicked around several solutions, but eventually 

settled on encoding values on a scale from 0 to 0.5 

and writing the number as a value from 0 to 1 on the 

texture. 0 is negative 0.5, and 1 is positive 0.5. Of 

course this means I need to modify the shaders to 

deal with this which means more shader debugging, 

and without a form of console print output, working 

through the shaders was tedious to say the least. 

Future Work 
 Optimization is the biggest issue that could be solved in the future. Despite the ease of 

use, and decent performance, the current simulation has relatively limited use in games due to 

the amount of resources it uses. 

Texture optimization would be necessary in getting good performance. Using 

GameMaker’s default textures, each texture for fluid properties contains four color channels 

(rgba). A straightforward optimization could be manually disabling certain channels for 

properties that do not need them. Density for instance only needs one color channel to work, 

but GameMaker by default allocates four channels. 

 Caching neighboring pixel colors could also speed things up. Numerous shaders do four 

texture lookups to find the color of the same neighboring pixels. While eliminating these texture 

lookups during the pressure calculations would probably be impossible, caching lookups during 

the various advections could potentially help with performance. 

 

Errors build on themselves and just go crazy. 

GPUs never really “stop” they just keep going 

until the results don’t make sense. 



Work Summary 
 Approximately 50 hours were spent working on this project, including research, 

experimentation, and debugging. 
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