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Abstract 

We explore a mass-spring based approach to simulating soft body deformation in real time. A 

mass-spring model is used to represent the 3D model, in which a set of point masses define the body’s 

surface, and the points are connected to each other through springs. The body experiences 

gravitational force, spring, damping forces, and internal pressure force. These forces attempt to 

simulate the deformation and restoration behavior of soft bodies. 

1. Introduction 

Our goal for this project was to simulate plushies, which are soft objects usually modeling a 

character, animal, or object. We extended the mass-spring model that we had used for cloth simulation 

to work with 3D models. In addition to the spring forces and gravitational force, we added the internal 

pressure force described in the paper. Given at least one input mesh with several user defined values 



including spring constant and mass, our implementation attempts to simulate and animate the behavior 

of soft objects. Our results are decent, though there is room for much improvement. 

2. Prior Work 

[1] This paper describes the mass-spring model similar to the one used in cloth simulation being 

used to simulate the soft bodies. Compared to other methods such as Finite Element Method or 

Elasticity, this is fast, uncomplicated, and easy to implement. The drawback is that it is not physically 

accurate. Instead, the simulation can be thought of as visually attractive. Some values like spring 

coefficients can be played with for more outlandish results, though this should be the case for most 

models. The paper describes several methods for simulation of soft bodies, but doesn't really provide 

any results, and it doesn't implement the methods in 3D models, which is the primary concern. 

[2] This paper proposes a combined spring-mass and internal pressure system for the real time 

simulation of 3D soft body objects, and is the ideal goal of the project. Implicit integration is used for the 

animation of soft body surfaces, pressure forces for internal characteristics, and conservation of 

momentum for animation deformations. The object itself is modeled using a triangular mesh of 

connected points, where each has six neighbors. Each point experiences gravity, spring forces, 

damping force, and pressure. Spring force wise, the math is quite similar to the Provot implementation, 

but generalized for 3D meshes. The paper includes a fast and stable implicit integration improvement 

from Y. Kang et. al., while using Matyka et. al.’s ideal gas law based pressure implementation for 

internal forces. 

[3] This paper describes a gas pressure based model for simulating soft body deformation. The 

basic idea is to imagine there is fluid inside the object providing pressure outwards, parallel to the 

normal of each face on the mesh. This particular paper chose gas as the internal fluid because it is 

faster to compute than navier stokes liquid simulation. The implementation is built on top of a working 

spring-mass model, specifically for cloth, to emulate soft body characteristics. The use of the Clausius 



Clapeyron equation: PV = nRT simplifies calculations greatly as a particle system is not needed with 

the assumption that any particle to particle interaction is too small to affect the pressure and hence 

deformation of the object as a whole. The temperature is also assumed to be held constant, leaving 

pressure to be solely correlated to the volume of the object. The volume is estimated using different 

bounding boxes, namely, simple bounding box, bounding ball, and bounding ellipsoid. 

3. System Overview 

The system takes a single input file that is passed to an overarching ​Mesh​ class that 

emcomposes several ​Plush​ instances. Each ​Plush​ instance represents an independent entity in the 

simulation by storing its own simulation parameters, list of vertices, edges, triangles, and adjacency, 

and bounding box. In every step of the simulation, the sole ​Mesh​ instance iteratively calls each ​Plush​ to 

update its particles’ attributes; e.g. acceleration,and position. The new acceleration of each particle is 

calculated from the summation of gravity, spring, and pressure forces. Integrated using verlet 

integration method, each particle’s new position is set, bounding box updated, and then used for 

collision detection. After any collision response is handled, the ​Mesh​ then calls each ​Plush ​to push its 

vertex positions, and triangle indices into a common ​Vertex Buffer Object​ held by ​Mesh​ to be displayed.  

4. Input Mesh Generation 

We wanted our system to be able to support meshes of arbitrary shape and design, yet to use 

internal pressure the mesh must be closed. As discussed in section 6, internal pressure model also 

makes heavy use of surface area and volume of the mesh, and thus these are also primary concerns 

when selecting a mesh generation method. These objectives demand that the mesh be highly regular 

both in terms of vertex valence and triangle area. As such, it is unfeasible given the time constraints of 

this project to implement our own custom mesh generator. After experimenting with several free to use 

object modeling softwares, we settled on ​Wings 3D​. This choice was made both based on ease of use 

and its ability to output directly in the file format we use for this project. 



4.1 Input Mesh File Format 

The system takes a single object file (.obj) as input. This file will contain the simulation 

parameters, vertex positions, polygon faces, and vertex properties for every object denoted in the file. 

The mesh generator we chose can output object files for every object we create, but it still needs to be 

further modified by hand to define several of our own simulation parameters. In addition, our system 

uses a different object delimiter than is standard for object files, which the modeling software follows, 

thus multiple objects must combined by hand into a single input file for the system. Below are some of 

the file format specifics that differ from the standard object file format: 

- k_structural the spring constant for the mass springs 

- damping the damping factor which simulates friction in the system to slow down particles 

- total_weight the weight of the overall object which is evenly distributed to each of its vertices 

- nmol the number of moles of gas particles inside the object. No gas particle is 

simulated in this system, but this is used to calculate the overall internal pressure 

- scale the uniform scaling factor of the object. This is used to control the volume without 

having to recalculate vertex positions for the object. 

- translate the 3D vector by which to translate the model. This is used to position the object 

in world space while still defining each object centered at the origin 

- fixed specifies an index that refers to an already defined vertex point, and fixes its 

position throughout the simulation at its original location after scale and translate 

- END_OBJECT our custom keyword that designates the end of one object 

All constants are expressed in SI units unless otherwise specified. For example, distance is in meters, 

pressure is in Newtons per meters squared. 

 

 



5. Mass Spring System 

The input file is passed through the ​Mesh​ to consecutive ​Plush​ instances until the end of file is 

reached. Each ​Plush​ takes the parameters and vertexes to create a Mass Spring Model of the object. A 

Mass Spring Model is commonly used in soft body and cloth simulation, so we have adapted the 

method based off of paper [2]. To model the soft bodies, we use a triangular mesh consisting of a set of 

points with mass that represent the surface of the body. For now, assume that all meshes will be closed 

meshes. Each of the points are connected to each other through triangle edges, which will represent 

the springs in the model. These springs are massless and will attempt to return to their original length 

when stretched or compressed. The mesh is stored as half-edge structure with the addition of 

adjacency of vertices to speed up neighborhood detection given any vertex. To be more specific, the 

adjacency list is stored as a vector of sets of integer vertex identifiers , so that given each vertex we 

can immediately obtain all its valence vertices, and by extension, edges. This leads to a larger memory 

footprint, but leads to performance gain as no time is spent deleting or creating vertexes, edges, or 

triangles past initialization. 

Once the mesh model is set up, we can simulate the behavior of the objects by iterating through 

their particles. In one timestep of the simulation, each of the points will experience a number of forces, 

which will be discussed in the following sections. 

5.1 Gravitational Force 

All objects on Earth experience gravitational force, and it can be computed through the 

equation: F​g​ = mg, where F​g ​is the gravitational force, m is the mass, and g is the acceleration due to 

Earth’s gravity, which is a constant 9.81. 

5.2 Spring Forces 

Each of the points on the surface will experience forces from the springs connected to it. When 

a spring is stretched or compressed beyond its natural or original length, according to Hooke’s Law, the 



force exerted by the spring is linearly proportional to the difference in lengths (F = kX, where k is the 

spring constant and X is the difference in length). To compute this, we use the equation:  

F​s​ = k(|v​ij​| - l​ij​)(v​ij​)/|v​ij​|, where F​s​ is the spring force from spring ij onto point i, k is the user defined spring 

constant, v​ij​ is the vector from point i to point j, and l​ij​ is the natural length of the spring. The total spring 

force on a point i is the sum of all the forces from the springs connected by points j surrounding point i. 

5.3 Damping Force 

Damping force of some form is standard in simulation systems to ensure that energy in the 

system steadily decreases, leading to eventually convergence. In our system, the damping force is 

essentially air resistance as the object moves through space, and when it expands or contracts based 

on internal pressure and applied force from collision. Due to the verlet integration method used in our 

system, the damping factor is directly applied to neither acceleration nor velocity, but the position of 

each particle. The equation, , where ​ is is(t Δt) (2 )x(t) (1 )x(t t) (t)Δtx +  =  − f −  − f − Δ + a 2 f /damping1  

used to update the position of every particle at each timestep [4]. 

5.4 Internal Pressure Force 

A closed mesh of purely mass-springs is essentially just a piece of cloth sewn into a ball. 

Logically, this cloth ball will still collapse into a pile or disc unless a force is present to maintain its 

shape. As such, [2], [3], and [5] have all proposed using internal pressure as the solution. Namely using 

the ideal gas law: ​PV = nRT​, where ​P​ is pressure in N/m​2​, ​n​ is the number of gas molecules in moles, ​R 

is the ideal gas constant, and ​T​ is the temperature. The idea is to assume there is n moles of gas inside 

the object, and thus the internal gas pressure would provide the force necessary to prop up the cloth 

ball. At the same time, gas is highly compressible and thus can convincingly simulate the deformation 

and rebound properties of soft objects. The key to not slowing the simulation down to a haul is to not 

simulate any gas particles inside the mesh, and simply assume the temperature and the particle 



interactions would not affect the mesh’s behavior in any other way [5]. Thus, after some manipulation of 

the equation, all that is needed is  the surface area (​S​) and volume (​V​) of the mesh.  

F p =  V
SnRT  

The surface area of the mesh can be easily approximated by summing up the area of every triangle in 

the mesh. Since the mesh is assumed to be closed, this approximation is as accurate as the model 

itself (of the intended simulation object). The volume calculation also turned out to be trivial. [6] verifies 

that many features, including area and volume, of a mesh can be calculated by a simple aggregation. 

The idea is to pretend each face triangle forms a tetrahedron with the origin point (or any other point in 

fact), and calculate the volume of this shape. This volume is made to be either positive or negative 

based on the cross product of triangle normal and direction to the origin. The volume over each 

triangle-tetrahedron is then summed to form the volume of the mesh itself. Precise equation and 

diagram from [6]:  

V |  (− y z  x y z  x y z  x y z  x y z  x y z )|| OACB = | 6
1 x3 2 1 +  2 3 1 +  3 1 2 −  1 3 2 −  2 1 3 +  1 2 3  

Where ​V​OACB​ ​is volume of triangle ​ACB ​with ​O​rigin, and ​x​1​, ​y​1​ and ​z​1​ are the position of point ​A​. 

6. Collision Detection 

In order to test the accuracy of our simulation, collision detection between two objects is 

essential. In our implementation, we have two different tests depending on what kind of objects are in 

the simulation: one for collision between a soft object and a floor, and one for collision between two soft 

objects. 

 



 

6.1 Collision Between a Soft Object and a Floor 

Collision between a soft object and a floor is fairly simple. Assume the floor is a mesh made up 

of two triangles facing upwards. Using the normal of the plane, we can test if all the points of the soft 

object is in that direction by using dot products. If the equation v • n, where v is a vector from any point 

on the floor to the point in question and n is the floor normal, returns a negative number, then the point 

is on the other side of the floor and collision should be handled. 

6.2 Collision Between Two Soft Objects 

Collision between two soft objects is much more complicated and can be very expensive if not 

optimized. Complex objects can consist of thousands of points, and calculating which two points are the 

points of collision in each timestep takes a ridiculous amount of time. For our implementation, we use 

some of the algorithms described in [7]. 

In the first phase, also known as the broad phase, we look at each object as a whole, using their 

bounding boxes. Using simple vector math we can find if two bounding boxes are overlapping. It is 

important to note that the bounding boxes are axis-aligned. Working with oriented bounding boxes 

requires a little bit more math, so we didn’t go that route. 

The second phase, also known as the narrow phase, attempts to detect collision more precisely. 

We base our method on the Separating Axis Theorem, which states that two convex shapes are not 

intersecting if and only if there exists at least one axis where the orthogonal projections of the shapes 

on the axis do not intersect. 

Firstly, we will assume that all of our objects are convex shaped. As for the test axes, there 

exists an infinite amount of axes, but for this test, there are only specific ones that we need to test: the 

normals of all faces of each object, and the cross products of all pairs of edges, one from each object. 

To project the shapes of the objects onto the axis, we need to project all the points on to the axis using 



dot products and find the minimum and maximum for each object. Finally, we can test these values to 

see if they overlap. 

Unfortunately, at the moment, our implementation of this method does not seem to work 

properly, so we are unable to test simulations involving two soft objects. 

7. Integration 

The integration method is a key determiner of simulation accuracy, timestep size, and 

consequently simulation speed. [2], whose work we primarily based off of, proposes a “simplified 

implicit integration” method for calculating new acceleration values that they claim is stable and efficient 

enough  for real time simulation. Their formula is shown below:  

v   Δ t+h
i =  

(|F | (m  + kh n ))i
t

i
2
i

(F h(|F | + khn |Δv |))′i i
t

i
t
i  

Where  is the acceleration at the next instance, is total force on particle ​i​ at time ​t​, ​k​ is thev  Δ t+h
i F i

t  

spring constant, ​h​ is delta time, ​n​i​ ​is number of neighboring points, and ​m​i​ ​ is the mass of particle ​i​. This 

integration method promises a lot between stability, robustness, and efficiency; not to mention, this also 

looks fairly easy to implement as it does not require solving complex systems of linear equations like 

earlier implicit integration methods [8]. 

Disappointingly, none of the above properties held in our implementation of the method. Using 

[2]’s method caused similar instabilities and eventual explosion of the mesh as explicit euler, albeit later 

on in the simulation. Following this find, we implemented two other explicit integration methods and 

decided to stick with the one we found more stable: verlet integration. The base verlet integration 

method we implemented is of the form: 

(t Δt) 2x(t) x(t t) a(t)Δt  x +  =  −  − Δ +  2  

Where ​x(t)​ is the position at time ​t​, and  is the size of the timestep, and ​a(t)​ is the acceleration at timetΔ  

t​. We do not claim to have found this method to be generally superior to any of the other methods we 



have tried, but merely that this method seemed to work the best for the specific set of simulation 

parameters we have tried. Verlet integration lead to the most stable simulation at the super small 

timestep of 0.001 second, but showed even stronger oscillations. The mesh would repeatedly expand 

and contract to no end. Eventually we found that verlet integration requires a different way of 

calculating damping because this method does not directly consider velocity of the particles at any 

point. To add damping back, we modified the above equation to that described under section 5.3. 

8. Conclusion 

We do have a decent, working simulation of a soft object as it collides with the floor, and the 

result looks somewhat realistic. We were a little too optimistic about the goals we initially set out to 

reach. However, had we had more time, we believe we could have solved most of the persisting 

problems, which include robust collision detection between two soft objects, and accurate bouncing of a 

soft object on the floor. Currently, the objects hit the floor and compress as normal, but the objects do 

not seem to try to revert to its original form and bounce from the floor as we had hoped. This could be a 

problem with providing the correct combination of input values. We think this is a reasonable 

assumption as earlier we had a serious problem dealing with irregular vertices in the mesh, however, 

the problem fixed itself once we found better values for the input parameters.  

9. Future Work 

If we continue working on this project, we believe another attempt at [2]’s implicit integration 

method is well worth the time. The potential benefits of an accurate, robust, and efficient integration 

scheme would make this simulation much more realistic as a simulation of soft body objects. It will open 

many opportunities to explore many different types of soft body objects from balloons to pillows to 

animals. Another thing worth exploring is accurate collision response between soft body objects. This 

goal is very similar to accurately simulation cloth-cloth interactions, especially with this mass spring 



model, but would prove much more interesting as different “degrees of softness” will lead to drastically 

different responses. 

10. Division of Labor 

- Approximately 65 hours spent on this project 

- Mesh input generation - Haoxin Luo 

- Mesh input parsing and formatting - Haoxin Luo 

- Creating original code base of half-edge mesh structure and springs - Both 

- Volume calculations - Haoxin Luo 

- Explicit Euler, Fourth Order Runge-Kutta, and Verlet integration - Haoxin Luo 

- [2]’s simplified implicit integration - Brandon Ip 

- Collision Detection - Brandon Ip 

- Collision Response - Brandon Ip 

- Floor Mesh - Brandon Ip 
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12. Photos 

 
 

In this experiment, an object shaped like pudding 

with 32 points is dropped to the floor. 

The result of the pudding colliding with the floor 

  

In this experiment, a sphere with 1002 points is 

dropped to the floor. 

The result of the sphere colliding with the floor 

https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects
https://www.cs.cmu.edu/~baraff/papers/sig98.pdf


 
 

Implicit euler (original method) with 

timestep=0.01, k=1, w=0.1, d=4, n=0.007 

Wolfram-alpha symbol found!? Same constants 

but timestep=0.001 

 

 

Simplified implicit integration method caused the 

mesh to collapse on itself 

 

 


