
Erosion of Point Clouds with Smoothed Particle Hydrodynamics

Alec Bernardi, Emilee Reichenbach

Abstract

Traditional representations of geometry for use in computer graph-
ics can be restrictive in applications with highly dynamic surfaces
due to the high degree of connectivity information that they require.
To address this shortcoming, forays into the realm of point-based
rendering have shown that connectivity information is not always
necessary to produce convincing results. To explore the potential
of point primitives in computer graphics, we have integrated point
clouds derived from triangular meshes into a particle-based fluid
simulation that is rendered with the point-splatting technique.

1 Introduction

Models in computer graphics are usually either static geometry or
animated characters. However, it is often the case that the geometry
in a scene must change dynamically to produce a desired artistic ef-
fect. One of these effects in particular is the dissolution of a model
into particles acting under the effects of a fluid simulation. Con-
sider an ice cube melting in the sun, a sand dune eroding in the
wind, or your favorite superhero ceasing to exist. In these exam-
ples, the models themselves deform over time as their volume tran-
sitions from traditional geometry into particles governed by a fluid
simulation. To facilitate the continuous deformation of an arbitrary
mesh, consider sampling its initial surface to generate a sufficiently
dense point cloud. Assuming that these points can be rendered as
a surface efficiently, it would be less troublesome to identify and
deform individual points, instead of regions on a mesh, that are af-
fected by the erosive forces of the fluid simulation. New particles
can then be introduced to the fluid simulation on the deformation
site to represent the eroded volume.

1.1 Overview

In an effort to implement it, this behavior was split into several dis-
tinct pieces. The first task is to take a traditional triangle mesh and
convert it to a set of points that are uniformly distributed across
its surface. The next component is a fluid simulation capable of
physics-based interactions with such a point cloud. Lastly, the
points representing both the static geometry and the fluid must be
rendered.

1.2 Related Work

The purpose of the project is to deform an object, which can easily
become difficult when using a mesh, as constantly updating, creat-
ing a new mesh, or keeping track of the mesh quality each time step
is expensive [Selim et al. 2016]. Therefore using a point cloud is
the chosen solution to avoid the hassles of traditional mesh defor-
mation.

To actually deform the point cloud data, we need a fluid simulation.
After learning how the Marker and Cell (MAC) approach works in
a previous homework, the fluid representation used in this paper is
Smoothed Particle Hydrodynamics.

A convenient and simple way to render points is by splatting. The
data from the point clouds and fluid simulation lend themselves to
being rendered via point splatting. These splats are then shaded
through the use of Phong shading [Botsch et al. 2003].

2 Mesh to Point Cloud Conversion

The main component of this project is the fluid simulation, which is
being used to dissolve or erode objects of arbitrary shapes and sizes.
This is not easily done with meshes, especially if the mesh be-
comes invalid during the simulation. Converting triangular meshes
to point cloud data provides a more intuitive way to deform the
object and takes away the expensive checks necessary to ensure a
mesh is valid.

Algorithm 1 Weighted Random Selection

1: procedure WEIGHTEDRANDSELECTION(n, triAreas)
2: p = rand() % 100
3: c = 0
4: for i = 0, triAreas do
5: c += triAreas[i]
6: if p ≤ c then
7: return i
8: return (rand() % (n+ 1))

To convert a three-dimensional mesh, given in a .OBJ file format, to
point cloud data, instead of performing a uniform random sampling
of the mesh, a weighted random sampling is done. This ensures a
relatively even spread of points over the entire surface of the mesh.
Each triangle of the mesh is given a probability of being chosen to
take a sample from, which is proportional to the ratio of its area to
the entire mesh. Calculating the areas of each triangle in the mesh
is done by computing half the cross product of the 3 points, shown
below.

S =
|AB ×AC|

2

For each triangle, its area is divided by the sum of areas for all
triangles, giving each triangle a probability proportional to its area.
An overview of the algorithm used to perform a weighted random
selection is shown in Algorithm 1, which is called as many times as
input samples.

Once a triangle is selected, to generate a random point inside of
it, barycentric coordinates are utilized to aid in the process. These
allow a point on a triangular surface to be expressed with the fol-
lowing equations.

P = uA+ vB + wC

where, u+ v + w = 1

A,B, and C are the vertices of the triangle and u, v, and w are the
barycentric coordinates. The barycentric coordinates add up to 1
because they are normalized, so if any of the three are less than 0 or
greater than 1, the point given by the previous equation is outside
of the triangle.

The u and v are randomly generated, through the rand() function
on a scale of [0, 1], then w is found with w = 1− (u+v). The new
point is then computed by using the equation above. Each point is
paired with a normal for the triangle it was generated from.

As a way to visualize the point cloud data, Gmsh, a mesh generator
and post-processing program, is used to see the points generated
from the original mesh. Figures 1 and 2 show the Stanford bunny
and Utah teapot, given as input meshes, for a variety of sample
sizes.

Figure 1: The three images show a range of number of surface
samples taken from an input mesh of the Stanford bunny. From left
to right the number of samples is, 103, 104, and 105.

Figure 2: The three images show a range of number of surface
samples taken from an input mesh of the Utah teapot. From left to
right the number of samples is, 5× 103, 5× 104, and 5× 105.

3 Fluid Simulation

The fluid body is simulated as a set of points that represent the par-
ticle field. These points are used to approximate the properties of
the fluid and respond to the resulting forces. As with most com-
puter simulations, the forces are applied at discrete time steps, and
then each particle’s properties are updated accordingly. The follow-
ing description details the process of updating the particles in this
discrete fashion.

For each time step, the new positions of the particles are inte-
grated using the second-order Velocity Verlet integration technique
[Swope et al. 1982]. Each particle maintains a position, velocity,
and acceleration, denoted as ~ri, ~vi, and ~ai, respectively. The fol-
lowing equations are used to update such a particle after a time-step
of ∆t.

~ri
′ = ~ri + ~vi ·∆t+

~ai ·∆t
2

As ~ai′ denotes the acceleration of the particle at its new position
~ri
′, each particle must have its position updated before computing

the net force acting upon it. This force can then be used to update
the acceleration of the particle, and consequently compute its new
velocity.

A formulation of smoothed particle hydrodynamics closely follow-
ing the work of Müller et al. [2003] is used to compute the forces
on each particle. The net force on each particle is the sum of forces
due to pressure, viscosity, surface tension, and gravity. To compute
these, however, the density and pressure of the fluid at each particle
must first be determined. Fortunately, the Lagrangian formulation
of the fluid simulation allows such quantities to be approximated as
sums across neighboring particles weighted by a normalized, radi-
ally symmetric kernel function with a compact support radius of h.
In this fashion, the density at each particle is computed as follows,
given that particle j has mass mj .

~vi
′ = ~vi +

~ai + ~ai
′

2
∆t

With this density, the pressure at the particle can be computed us-
ing an equation of state. In this case, one resembling the ideal gas

law is used. Two constants are used to stabilize the gradient of the
pressure field, which is used to compute the force due to pressure.
These constants are the rest pressure p0 and the rest density ρ0, and
can be chosen arbitrarily. Meanwhile, the gas constant k depends
on the temperature of the simulated fluid.

ρi =
∑
j

mjWpoly6 (~ri − ~rj)

=
315

64πh9

∑
j

mj

(
h2 − |~ri − ~rj |2

)3
pi = k(ρi − ρ0)− p0

The force due to pressure is computed with the following equation.
This differs from the work of Müller et al. [2003], which uses a
different formulation that did not yield acceptable results when im-
plemented.

~fp =
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∆Wspiky (~ri − ~rj)

= − 45

πh6

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
(h− |~ri − ~r|)2

|~ri − ~r|

The force due to viscosity, on the other hand, is unaltered, and can
be computed as follows, given the viscosity constant of the fluid, µ.

~fv = µ
∑
j

mj
~vj − ~vi
ρi

∆2Wviscosity (~ri − ~rj)

=
45

πh6
µ
∑
j

mj

ρj
(~vj − ~vi) (h− |~ri − ~rj |)

To compute the force due to surface tension, the surface normal ~ni

must be determined. This is computed by taking the gradient of
what the literature refers to as the color field. If the length of the
resultant normal is less than some threshold, then it is considered
inside the fluid and subsequently set to zero. This increases stability
by avoiding division by near-zero values, while also preserving the
idea that surface tension only has noticeable effects on particles
close to the surface of the fluid.

~ni =
∑
j

mj

ρj
∆Wpoly6 (~ri − ~rj)

= − 945

32πh9

∑
j

mj

ρj

(
h2 − |~ri − ~rj |2

)2

~ft = −σ
∑
j

mj

ρj
∆2Wpoly6 (~ri − ~rj)

=
945

32πh9
σ
∑
j

mj

ρj

(
|~ri − ~rj |2 − h2) (7|~ri − ~rj |2 − 3h2)

The force due to gravity is relatively trivial to compute. Given that ~g
is the acceleration due to gravity, the following equation will apply
the uniform acceleration to each particle as a force.

~fg = ρi~g

After computing all forces acting upon each particle, the new ac-
celerations can be determined with the following equation.

~ai
′ =

~fp + ~fv + ~ft + ~fg
ρi

Subsequently, the velocity of the particle can be updated according
to the aforementioned integration method, and the entire process
begins again to capture the next state of the following time-step in
the simulation.

Figure 3: On the left, a 2D view of the fluid simulation. On the
right is a 3D view. Particles with density less than the fluid’s rest
density are marked in magenta.

4 Point Splatting

The technique of point splatting has been quite successful at ren-
dering points on the surface of an object with no connectivity infor-
mation [Botsch et al. 2005]. This is readily applicable to particle-
based fluid simulation, where the only readily available information
about the fluid is the location of each particle, as well as the surface
normal in that location.

The basic idea behind point splatting is to render circular discs,
called splats, tangent to the surface at each sample point. Using the
standard primitive GL_POINTS in OpenGL, each uploaded ver-
tex is rendered as a filled quad of a given size. Furthermore, if
GL_POINT_SPRITE is enabled, then the fragment shader is sup-
plied the UV coordinates of the fragment within the filled quad.
This functionality allows each fragment to determine whether it lies
on the splat.

While splats are circular discs, they exist on a plane defined by its
center and normal. So, unless the camera views the splat along the
normal, then it will appear as an ellipse when projected onto the
image plane. To determine which fragments fall within this ellipse,
first consider the projection of a single point onto an arbitrary plane.
For a point ~p and plane defined by the point ~c and unit normal ~n, the
projection ~p∗ of ~p onto the plane can be found by subtracting the
component of the difference between ~p and any point on the plane
that is orthogonal to the plane itself. Since the point ~c is defined to
be on the plane, the following equation holds.

~p∗ = ~p− n̂(~c− ~p · n̂)

Once an image space fragment is projected onto the same plane as
the splat, a simple distance check can be used to determine if it
falls within the splat radius. Fragments that do not pass this test are
discarded. Those that do, however, may be colored and rendered
to the framebuffer. Phong shading was implemented in order to
provide visual cues like shadows and specular highlights to better
emphasize the shape of the rendered surface.

Figure 4: Points on a sphere visualized with point splatting. Note
the small elliptical shapes that comprise the surface.

5 Discussion of Results

After implementing each of the pieces outlined in the previous sec-
tions, models can be converted into point clouds, imported into the
fluid simulation as an initial state for particles, and then visualized
with splatting as the fluid simulation progresses.

Figure 5: A drop of viscous liquid after colliding with the floor
plane and sending columns of liquid upwards.

5.1 Performance

After tweaking parameters to adjust for numerical stability, the sim-
ulation is capable of interactive frame-rates thanks to load distribu-
tion over all available cores. This degree of parallelization is pos-
sible due to the highly parallel nature of particle-based approaches
for fluid simulation. Further performance benefits were achieved
by using an efficient approach to finding the nearest neighbors for
each particle, inspired by the work of Bayraktar et. al [2009].

Num. of Particles Approx. FPS h ∆t

215 (32k) 6 1
20

0.002

214 (16k) 12 1
16

0.002

213 (8k) 30 1
16

0.0001

Table 1: Performance for fluid simulation on Intel Core i7-
6700HQ.

Even with such promising performance metrics, the current imple-
mentation is heavily CPU-bound. The only task given to the GPU
is the point splatting, which involves hardly any work, since there
are relatively few splats, and drawing splats is innately quite effi-
cient. As a result, offloading more of the particle simulation onto

the GPU via compute shaders would further increase performance,
and perhaps attain interactive frame-rates with even more particles.

5.2 Limitations

While there were plans to gradually introduce particles to the fluid
simulation by eroding volumes from the original mesh, the mecha-
nism to actually do so remains unimplemented, mostly due to time
constraints. Even so, the point clouds can be used as the initial state
of the fluid simulation, to a limited effect.

Figure 6: The Utah Teapot converted to fluid and colliding with the
floor plane.

While the performance of the simulation is promising, there is a fair
amount of parameter tuning that must be done to achieve fast and
stable results. The kernel radius h must be large enough to ensure
well-approximated behavior, while also being small enough to keep
the average number of neighbors for each particle low. Moreover,
while the fluid properties can be assigned to more-or-less realistic
values, low-viscosity fluids like water have much lower stability
than highly-viscous fluids.

5.3 Future Work

There are many routes to take for future work. Improvement of the
program performance can be done through moving the fluid sim-
ulation calculations onto the GPU and performing all the calcula-
tions in parallel using compute shaders. Furthermore, the numerical
stability of the algorithm could be improved in order to allow for
smaller time-steps, liquids with much lower viscosity, and overall
improve the accuracy of the simulation.

In an attempt to make each of the point splats more cohesive, splat
filtering can be used to create a soft boundary on each splat to re-
duce aliasing [Botsch et al. 2003, 2005] This would decrease the
visual distinction between splats. Splat quality can be further im-
proved by using multipass rendering to interpolate splat normals
across the surface, resulting in more even shading, and even less
distinction between actual splats. Lastly, more splats could be gen-
erated by using the fluid simulation state to interpolate more surface
particles exclusively for rendering.

While the current implementation of mesh conversion only samples
surface points, the idea of sampling meshes volumetrically arises
as a potential improvement. This would improve upon the ability
to use point clouds as initial states for the fluid simulation, which
expects a volume of fluid, and not just the surface. One of the
difficulties in importing the point clouds is determining the mass
and volume of each particle. Accuracy in this regard is imperative
for stable simulation. Volumetric sampling would not only provide
proper initial state, but also provide a method of estimating the vol-
ume of the point cloud before importing it.

6 References

BAYRAKTAR, S., GUDUKBAY, U., AND ZG, B. 2009. Gpu-based
neighbor-search algorithm for particle simulations. J. Graphics,
GPU, and Game Tools 14 (01), 31–42.

BOTSCH, M., AND KOBBELT, L. 2003. High-quality point-based
rendering on modern gpus. 335– 343.

BOTSCH, M., SPERNAT, M., AND KOBBELT, L. 2004. Phong
splatting. vol. 2004, 25–32.

BOTSCH, M., SORKINE-HORNUNG, A., ZWICKER, M., AND
KOBBELT, L. 2005. High-quality surface splatting on today’s
gpus. 17– 141.

EFRAIMIDIS, P., AND SPIRAKIS, P. 2008. Weighted Random Sam-
pling. Springer US, Boston, MA, 1–99.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Smoothed particle hydrodynamics on gpus. Computer Graph-
ics International (01).

HUANG, C., ZHU, J., SUN, H., AND WU, E. 2013. Efficient fluids
simulation and rendering on gpu. 25–30.

MACKLIN, M., AND MLLER, M. 2013. Position based fluids.
ACM Transactions on Graphics 32 (07), 104:1–104:12.

MACKLIN, M., MLLER, M., CHENTANEZ, N., AND KIM, T.
2014. Unified particle physics for real-time applications. ACM
Transactions on Graphics 33 (07), 1–12.

MLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. vol. 2003,
154–159.

NEHAB, D., AND SHILANE, P. 2004. Stratified point sampling of
3d models.

SCHUSTER, R. 2007. Algorithms and data structures of fluids in
computer graphics.

SELIM, M., AND KOOMULLIL, R. 2016. Mesh deformation ap-
proaches a survey. Journal of Physical Mathematics 7 (06).

