
Tearing Cloth in Blender
Alexa Orosz, Steven Utley

Advanced Graphics Spring 2019

Figure 1: torn cloth

Abstract

The creation of tearable cloth in Blender has
been requested for a few years by users of the
software. Working with the existing tools and
cloth structure in Blender proved difficult to
manipulate, and in order to manipulate the
spring-mass system correctly, we have
implemented a visualization system to see the
forces on the springs. Tearing cloth exists in
graphics already, but in Blender there are only a
few expensive plugins, some of which do not
even work with the cloth soft body system and
fake the tearing process.

 Here we describe our developments
required in order to implement tearing cloth
through the Blender API using Python. First, we
created a system to visualize the forces on the
springs. Secondly, we developed a way to
determine when the cloth was stretched beyond
a force threshold that we determined. Thirdly,
we used internal tools to slice the cloth one the
threshold was reached.

1 Introduction

1.1 Motivation

Blender is a free and open source software
for the entire 3D pipeline and some newly
implemented 2D features. Within this
framework, there are also opportunities for
extension in almost every conceivable way
using Python and Blender Objects. Instead
of just creating a tearable cloth that runs on
our code base, we wanted to create
something useful for everyone. After going
on several Blender forums to learn more
about the cloth’s underlying structure, we
saw that there were several requests for
Blender to implement a way to tear the cloth
as there was no existing way to do this with
soft bodies. There are existing scripts and
addons available, but the most realistic are
for animation effects or are rigid body
objects made to look like cloth, and do not
actually use the cloth system. This is not
helpful is you want to use the cloth
properties.
 Blender already has the underlying
structure of a well-developed spring-mass
system. In addition to that, there are several
tools, such as bisect and edge split, to cut
open meshes. The tools to create a torn mesh
are already there, and one can easily make
an already torn cloth. The challenge comes
from making the cloth tear automatically

when sufficient force is enacted upon it,
either from a solid object, or the edges of the
cloth being torn apart for example.

1.2 Blender Cloth

Blender, as already stated, has an existing
spring-mass system, with four types of
springs: tension, compression, shear, and
angular. It also has the property of plasticity,
which allows it maintain deformations after
being subjected to stress, and does not return
to its original shape. At first, the system
used Provot correction, as we did in our
second homework, but was eventually
phased some of it out and with another
unspecified technique. Later, Mezger’s
Cloth Collision Model was implemented
alongside a process called Time Steps made
in-house.
 A Blender object can be designated as
“cloth” in the Physics tab after creation.
From there, other objects that will interact
with it can be created, lighting and materials
or UVs can be applied, particles can be
added, and from there the simulation can be
run.
 It also has multiple settings that already
exist that can be adjusted to change the look,
mass, stiffness, and amount of bend (cloth
wrinkling). As such, many types of cloth can
be simulated with minimal effort on the part
of the creator, and other addons, like tearing
can be applied to all of them without having
to change anything. In addition, changes can
applied to spring (cloth velocity where
higher is smoother), air (to slow falling), and
velocity (damping to help cloth reach resting
position).
 We also used the Pinning setting in our
simulation, which holds specified vertices in
place. There is the option to pin it as
strongly as desired, but we just chose an
irremovable pin so the cloth would not come
loose during testing.

1.3 Cloth Tearing

Cloth tearing in Graphics involves splitting
the cloth mesh as a result of forces on the
simulated cloth exceeding the reasonable
threshold of strain that the cloth can
withstand. In order to be realistic, it attempts
to mimic the path the rip will take through
the most strained or weakest parts of the
cloth, taking into account the integrity of the
type of cloth and the amount of strain it can
take. For example, a cloth simulation of
jeans being torn would take more force and
the rip would face more resistance than that
of a simulation of cotton.
 We originally considered using the base
of the spring-mass system, and though we
did not go through with that idea, we did
gain a large knowledge base that helped us
with our final implementation.
 In Four Large Steps in Cloth
Simulation, we learned of a new way to
create cloths by using a system of particles
and internal forces between them to simulate
a cloth structure rather than the vertices and
spring-mass. The movement came from
scalar potential energy and calculations
depend intensely on implicit integration, and
can handle collisions well. This would allow
for extremely accurate simulations but the
time to fully and correctly implement this
was beyond our scope.
From there we moved into the basics of
cloth in Tearing Cloth, which helped us
determine several issues to consider, such as
where the rupture will occur, the path of the
rupture, the structural changes that will
happen as a result of the split, and
preserving the integrity of the cloth. In this
implementation, they use two types of
springs including a bend-shear spring
connecting adjacent triangles, and an
irregular triangular structure. The bend-
shear springs are created dynamically during
the ripping process after the old ones are
destroyed after the springs exceed a certain
threshold. The tearing is determined by
finding what spring is under stress, and takes

past strain into consideration. This was an
excellent basis that helped us determine our
plan of action when it came to our final
implementation, though it was modified for
the underlying structure that exists in
Blender.
 Perhaps optimistically, we also
attempted to see how quickly we could
create this simulation in order to make this
real-time, back when we were considering
just making a code base. Fast Simulation of
Cloth Tearing is less concerned with
physically accurate results, such as we were,
and instead focused on speed and
computation. While we did have real-time,
or close to real time as a goal, we did not
need insane blazing speed. Similarly to the
other papers we examined, they
implemented a mesh of triangles, with a
half-edge data structure, and a physics
particle for each vertex on top of that. To
tear the mesh the target vertex is split into
two, the new being a replica of the old,
directly in the same spot, but unattached to
one side. The “old” vertex is unattached to
the “new” vertexes’ side. A new particle is
then created for this new vertex to help
continue the simulation. Naturally, this
would have been inconvenient to create for
us, as we do not have the time or perhaps the
ability to create a complete physics based
system.

Lastly, we took a look at extremely realistic
tears courtesy of Simulation of Tearing
Cloth with Frayed Edges which not only
dealt with tearing a cloth realistically
including the right kind of edges that a
woven material would have. They too used
dynamic edges and a spring-mass system,
fortunately similar to the structure used by
us in our past assignment. Surprisingly to us,
we ended up following this idea and

implementation quite closely, at least for the
base layer.
 The actual structure of this mesh for the
paper has two layers, the base continuous
cloth and the top layer of a yarn model more
commonly used in engineering. Where there
are no tears, the continuous model is used
using the familiar structural, shear, and
flexion springs and when their strain
threshold is exceeded, they tear. In that
over-strained area, the continuous layer is
blended with the yarn layer, which is made
up of mass particle pairs. In over-strained
regions, these particle loosen and separate,
spreading to other areas, resulting in the
desired rips and frays.
 Moving forward, we kept two main
ideas points in the forefront:
1. Springs can take a certain amount of

strain, up to a predetermined threshold
depending on the cloth’s type and
integrity

2. When this level is reached, the springs
shall degenerate and the cloth will split
at that point.

2 Visualizing Spring Forces

So in order to properly do this in Blender,
we had to accomplish few things. We first
had to find the springs to observe and
change their properties in order to perform
correct tests. Secondly, we decided to
visualize these springs and the strain on
them to track the forces enacted during our
simulations and tests.
.

2.1 Setting Up the Addon

In order for us to start our addon, we register
two classes to handle the user interface we
created for the visualization. One is for the
panel and the other is for the drawing inside

Figure 2: The UI created to visualize and edit springs, with debug info

the renderer. This was previously attached to
the animation hook, however this proved
ineffective for our needs as this method did
not allow for updates at every view change,
while the other classes allowed for these
updates to occur. Ideally, we would have
liked to keep it within the animation hook in
order to minimize how often the physics are
checked. Unfortunately, the physics remains
grouped with the tension visualization as
they work on the same data structures and
would be difficult to separate. This results in
cloth physics being checked on every visual
change (including changing the view
position, for instance).

2.2 Seeing is Believing

Then we moved on to creating the
visualization itself. Currently, we select the
chosen object, in our case, the cloth, and
fetch two sets from it. One set is full of the
original vertices from where the cloth was
created or placed at the beginning of the
simulation or animation. The other contains
the current vertices and is updated at every
time step of the animation. The former is
retrieved via a helper method and the latter

is directly passed to us during the
simulation.
 After collecting this information, we
move into finding the spring connections
between these vertex points. Using the
starting vertex set, we iterate through every
pair of vertices to determine if there is a
connection between them. If they have 1
unit between them, they are connected by a
structural spring. If the distance is √2, then
they are connected by a shear spring. Then,
we compare this information to our current
vertex set, and use them to render our
springs and calculate how tense each spring
is.

3 Creating Tears

We calculate the tenseness of the spring at
every time step, allowing us to test the result
against the threshold to determine if the
strain the spring is under is too much to
handle. If that is the case, we know the edge
must tear. Here, we move to cutting the
overstrained edges.

 To start, the edge container is iterated
through, and if we find our strained edge, we

Figure 3: The cloth model after several
successive tears

move to the next step. We then take the
object mesh and convert it into a bmesh so
we can edit it using one of the tools
available. At first, we considered using the
Bisect tool, which allows the user to cut the
mesh in two along a custom plane. It either
can simply cut the mesh, fill the hole created
by the cut, remove the geometry on one side,
or cut in a straight plane, but we were only
interested in the base tool. In the end, we
went with Edge Split, which creates a hole
using two or more interior edges that are
selected. Those selected edges are
duplicated to form the hole border. The
strained edges are selected and are split so
they tear and create a hole. Finally, the
bmesh is loaded back into the stored mesh,
overwriting the previous version.

4 Implementation

To implement this method, we created a new
Blender scene that was completely empty
for each demo, so that we would have a
fresh scene every time without any artifacts
that we could unknowingly have left behind.
We then created a rectangular mesh and
made it a cloth object, pinning the exterior
edges to hold the cloth in place in the air so
we could enact a sufficient force on the
inside edges of the cloth.
 Next, we set the parameters for our
springs and run through several simulations
to observe the springs to see if the cloth

Figure 4: The wireframe after several
successive tears

behaved correctly. Then, we created another
object, a box to interact with the cloth, and
set its starting position to a point above the
cloth so it would drop down and impact the
cloth with, hopefully, enough force to tear
the cloth at impact point. We had to set the
box to a specific set of parameters so it
would interact with the cloth, out first
challenge to overcome. The rigid body
setting was changed to active for the box
and passive with soft body for the cloth
mesh.
 From there we ran the simulation,
testing for contact between the two and
tracking the stress on the springs. Then, we
implemented the bisect tool, but were only
able to make it work if it was precutting the
mesh, which is cheating according to the
goal we had set for ourselves. As such, we
changed tactics and implemented the mesh
split instead.
 To test this, we created multiple scenes
and dropped boxes onto the cloth, adjusting
code and cloth parameters as needed.
 After many runs, we discovered that our
tension threshold was too low, and our
unexpectedly powerful cloth was able to
perform well enough to catch the box and
stretch out, but not tear. We played around
with the settings, eventually adjusting the
tension to a level that would allow us to
demonstrate the script we had created,
showing the tears and the spring tension.

5 Results

The successful simulation we managed to
create was a decent approximation of torn
cloth. The tension in the springs exceeded
our set threshold when we dropped the cube
onto the cloth, and the cloth did tear,
creating a hole. We were able to run this
simulation multiple times with the same
cloth to create larger holes and a cloth that
was further degraded. We were also able to
replicate these results, at first.

We achieved what we had set out to do
in our most basic outline; create a cloth that
would tear when subjected to sufficient
forces. As we had also created a force
visualization aspect to our addon, we could
monitor the levels of tension as well,
allowing for live testing that would give the
user visual feedback.

Finally, our program supports different
kinds of cloth, different strain thresholds for
the springs, and different stiffness settings
for the springs. Because of this high level of
personalization, it can be used for technical
and theatrical simulations and animations.

6 Implementation Issues and Future

Work

Figure 5: Examples of the cloth and
visualizations working correctly, but not the tear

Figure 6: Examples of the spring visualization
glitching

While implementing these addons, we ran
into several issues, the majority of which
were caused by our limited experience with

Blender scripting before this, and not our
understanding of the underlying structures
or coding ability.
 First, we tried to put the visualization
components in the animation hook, which
ended up not updating as we wanted because
the cloth simulation was under the physics
header, and was run in the drawing side of
things, not the animation. From time to time,
they would also come unattached from the
cloth and we had to reset the scene.
 When we attempted to first drop the box
onto the cloth, it phased straight through and
since they were not interacting, the spring
tension would not change, and we could not
even begin looking at data to decide what
the limits would be.
 Before we completely implemented one
algorithm to tear the cloth, we tested out
several options through the user interface,
and the bisect tool seemed very promising as
it could create a rupture and a rupture path
that did not have to follow any existing
edges. This was all well and good in terms
of looks, but we could not get it working
right on the Python side. Of course, we had
to switch and chose Edge Split. This also did
not perform when we implemented it until
we finally discovered that our tension
threshold was too low for the impact.

 Finally, it ended up breaking when we
attempted to open it in a new file. It would
have the right edges selected, transform into
a bmesh to be cut, and then we would
receive the error of no edges selected,
despite the fact we put in checks that one
edge or more were in fact selected. While
older versions still display the desired
behavior, a more thorough examination of
the root cause remains to be done.
 At the moment, the algorithm results in
somewhat awkward and blocky holes,
although this is in part a function of the
small mesh sizes. Modifying the chosen
tools (for instance, bisecting over-strained
planes along a particular angle instead of

only cutting edges) would enable us to
create a more realistic split.
 We would also love to tear the cloth in
more creative way, either by pulling it apart,
twisting it, pushing it down on a sharp
object, or having it get “caught” on
something to show that as long as the
tension is over the threshold out cloth will
tear in the proper way like our addon
advertises. Eventually, if this becomes as
bug free as we can make it, this addon can
be released into the Blender store for others
to use.

7 Work Distribution

Alexa researched the underlying structures of
Blender cloth and how to split/cut meshes, set up
test cases, and helped implement the actual cloth
tearing. Steven implemented the visualization of
the springs and their tension, helped implement
the actual cloth tearing, and debugged code.

References

Baraff, David, and Andrew Witkin. Large Steps
In Cloth SImulation. Siggraph, July
1998,
www.cs.cmu.edu/~baraff/papers/sig98.p
df.

“Blender Reference Manual.” Blender 2.79
Reference Manual - Blender Manual,
docs.blender.org/manual/en/latest/index.
html.

Metaaphanon, Napaporn, et al. Simulation of
Tearing Cloth with Frayed Edges.
Pacific Graphics, 2009,
web.media.mit.edu/~bandy/cloth/PG09c
loth.pdf.

Onal, Emre, and Veysi Isler. Cloth Tearing
Simulation.
seer.ufrgs.br/jis/article/viewFile/41187/3
0099.

Souza, Marco Santos, et al. Fast Simulation of
Cloth Tearing. SBC Journal on
Interactive Systems, 2014,
seer.ufrgs.br/jis/article/viewFile/41187/3
0099.

Figure 7: Here we can see the spring
forces visualized from different angles, with
the red ones signifying stressed springs

http://www.cs.cmu.edu/%7Ebaraff/papers/sig98.pdf
http://www.cs.cmu.edu/%7Ebaraff/papers/sig98.pdf

