Artistic Renderings For Images and Video

Alexander D. Christoforides

Rensselaer Polytechnic Institute
chrisa4@rpi.edu

Andrew Aikens

Rensselaer Polytechnic Institute
aikena@rpi.edu

Figure 1: Frank Lloyd Wright’s Fallingwater rendered in the Impressionist style

ABSTRACT

A major focus of computer graphics research is the synthesis
and production of realistic images from three-dimensional
scenes and traditional two-dimensional images. Contrary to
this trend, this project aims to tackle the issues of producing
non-photorealistic renderings of two-dimensional images
in various artistic styles and combining these renderings
into a video where visual flickering is significantly reduced.
A common problem that many identify when addressing
the topic of creating artistic video renderings is that visual
flickering occurs between frames, significantly affecting the
quality of the synthesized result. To handle this, we propose
implementing an algorithm based on difference-masking to
efficiently and significantly reduce visual flickering between
frames of the rendered video, thus improving the temporal
coherency of the overall result.

To accomplish this, we need to devise a maintainable and
extendable framework to transform the proposed algorithms
into a functional application which can produce artistic ren-
derings of both static images and videos with the assistance
of 3rd-party modules (OpenCV, numpy, FFmpeg).

KEYWORDS

computer graphics, non-photorealistic rendering, artistic
styles

1 INTRODUCTION

This project encapsulates the implementation defined by
the references below. Explained briefly, our implementation
imitates the natural process an artist uses when creating
paintings. This means that paint is applied to the canvas
from larger to smaller detail. Creating a foundation initially,
and increasing the level of detail for each new layer of paint.
We put forth a reliable and maintainable open source soft-
ware solution that transforms photo-realistic images into
painted renderings. This paper provides an overview of the
programming techniques, algorithms, and results from the
implementation of the referenced work as well as a discus-
sion on tasks that are tagged as future work.

2 PRIOR WORK

Haeberli’s work in [4] lays the foundations for all work af-
terwards with respect to creating artistic non-photorealistic
renderings of images. It proposes representing these ren-
dered images as collections of filtered brush strokes which
are then iteratively applied to generate an output image. To
mimic the brush strokes that artists actually use when creat-
ing paintings, the paper introduces a parameterization which
describes brush types, stroke sizes, and directions; these all
affect the way a given stroke is generated and subsequently
rendered to the canvas. By changing the parameterization,
different artistic styles can be captured and mimicked in the
resulting rendered image. Additionally, Haeberli describes

https://www.docs.opencv.org/3.3.1/index.html
https://docs.scipy.org/doc/numpy/reference/
https://ffmpeg.org/

Advanced Computer Graphics, Spring 2019, RPI

methods of introducing random color and positional pertur-
bations to the strokes being drawn to achieve a more realistic
effect which more closely imitates paintings by actual artists.
By utilizing these random features, inherent texture can be
added to the rendered image, simulating imperfections in
the paint or canvas that an artist uses.

Aaron Hertzmann iterated upon Haeberli’s work in [5].
In this work, he expands upon Haeberli’s proposed param-
eterization and defines a broader set of parameters which
capture the overall characteristics of the generated brush
strokes in the rendered image. In the published work, the
parameterizations for a few different artistic styles are de-
lineated. Based on these, Hertzmann identifies the benefits
of representing the brush strokes as Cubic B-Splines and
outlines a few procedures to generate the brush strokes and
render them to the canvas. An important note they make is
that finding new parameterizations is quite easy, but find-
ing parameterizations which produce rendered images in a
style similar to actual art styles is exceedingly difficult. Based
on this fact, we decided not to attempt to identify unique
parameterizations which mimic other artistic styles.

Hertzmann further synthesized his prior work in his the-
sis [6] and delves into more detail regarding the algorithms,
procedures, and limitations of the methods that he proposes.
He revisited the parameterizations that he defined in [5] and
defined them in a more concise way which better interfaces
with the other work he displays in the paper. Most notably,
he proposes a method of extending his image rendering al-
gorithms to additionally render videos in artistic styles as
well. One major concern that many have when rendering
videos in this way is temporal coherence, and Hertzmann
subsequently presents a method of performing this coher-
ence computation in a frame-to-frame setting; holistic video
temporal coherence was not explored and discussed.

3 PAINTING STYLES REFRESHER

To better understand the results of our work, below you
can find a brief aside on the different types of artistic styles
represented through our review of [2], [1], and [3]. Each
one is characteristically different from one another and is
described by a unique parameterization within the program
logic.

3.1 Impressionist

The impressionist painting style can be most frequently
found in the works of art created by artists during the 19th
century. When observing a painting of this type, one can
notice small, thin, but visible brush strokes which cover the
canvas and coalesce into a coherent image. Typically the
composition of these works can be summarized as open and
additionally they highlight the accurate depiction of light and

Christoforides | Aikens

its subsequent effects on objects. An example of a painting
in this style can be found in figure 2.

B L

Figure 2: Claude Monet, Impression, Sunrise, 1872.

3.2 Expressionist

Unlike the impressionist style, the expressionist style is more
of a modern movement in art which initially began in the
poetical setting. The goal of these types of artworks is to
capture and present the world from a subjective point of
view; they typically distort the reality of whatever they are
portraying in a radical way to evoke a desired emotional
effect or idea in the viewer. The individual strokes in these
types of paintings are characteristically more exaggerated
when compared to those of the impressionist style. Figure
3 displays The Scream, a painting in this style by Edvard
Munch.

Figure 3: Edvard Munch, The Scream, 1893.

Artistic Renderings For Images and Video

3.3 Pointillist

When compared to the previous two art styles mentioned,
the pointillist style stands out as completely disparate. Orig-
inally used by art critics to ridicule the work of these artists,
the pointillist style presents subjects through the use of care-
fully placed points on the canvas. Unlike the other art styles
which more clearly defines the objects in the scene with the
curvature and size of the brush strokes, pointillist images are
exclusively comprised of color dots (sometimes restricted
to a certain palette). The artist relies heavily on the ability
of the viewer to blend the positioned color into a coherent
image. Notably, some of Andy Warhol’s early works can be
characterized as being made in this style. Maximilien Luce’s
Morning, Interior is shown in figure 4 and was painted using
the pointillist technique.

Figure 4: Maximilien Luce, Morning, Interior, 1890.

4 DATA STRUCTURES

To facilitate the artistic rendering of both images and videos,
a robust code structure is required to manage all of the data
that is being provided to the program. Additionally, informa-
tion regarding what type of style to render, where to output
the render, and the actual process of rendering the image or
video is all required, and in order for this application to be
modular, a carefully planned architecture is required. This is
described further below.

4.1 Image

The main purpose of the Image class is to abstract away
the implementation details of both OpenCV and numpy so
that the user of this application doesn’t need to know any-
thing about them. Combining the intricacies of both of those
libraries in addition to the one we developed would be over-
bearing, so we thought it fit to alleviate some work from the
user.

The Image class achieves this by acting as a wrapper to
an OpenCV/numpy image representation. It additionally has

Advanced Computer Graphics, Spring 2019, RPI

various methods for accessing and setting data in the image
in addition to being able to compute and return a Gauss-
ian blur, horizontal derivative, and vertical derivative of the
image. Through this class, we efficiently manage the data
regarding images and are able to perform operations which
the render algorithm requires with ease.

4.2 BrushStroke

An integral part of being able to render input images and
video in an artistic, non-photorealistic style is being able
to represent the individual brush strokes which make up
the image. Because the individual strokes need to contain
information regarding control points, previous directions,
and color, we decided to develop the BrushStroke class. It
holds information regarding the given stroke’s radius, color,
control points, and previous directions. These are generated
in the paintStroke() algorithm and are returned to the
paint() algorithm to then render after computing all the
given brush strokes for a layer.

BrushStroke objects are eventually passed to the
renderStroke () function which handles the interpolation
of the control points and puts color in a given radius on the
canvas.

4.3 RenderableImage

The RenderableImage class is responsible for maintaining
two Image objects, one for the source (reference) image and
one for the destination (canvas to paint on). Additionally, this
class contains all the relevant functionality to actually take a
given image and render it artistically in a non-photorealistic
way to the canvas image. Instead of requiring a user to specify
all of the parameters manually to render the image or video,
we hide these details and only require users to specify what
type of style they would like using the name of the art style
(e.g., “impressionist”, “expressionist”, “pointillist”). If a user
would like to add a new style, then all they have to do is
add it add the top of the RenderableImage class as a new
renderable style.

Additionally, the RenderableImage class has the capabil-
ity of getting and setting both of the stored images. If a user
would like to store the image, then all they would have to
do is get the destination and call the save() function on it.
By hiding all of the implementation details of the rendering
process, we eliminate all non-essential information that a
user needs in order to use our application. Similarly, since
the rendering function is part of the RenderableImage class,
a person can specify a new rendering function and call that
if they so desired; this further exemplifies the modularity
and flexibility of the system that we have developed.

Advanced Computer Graphics, Spring 2019, RPI

4.4 Video

To facilitate the artistic rendering of video in addition to im-
ages, we required another data structure to help manage all
of the rendered frames for the given video. The Video class
satisfies these needs as it does this in addition to output all of
the rendered frames as they are being processed. Videos and
images are actually quite similar, but one major difference is
the fact that a video is comprised of many, many renderable
images instead of just one. The Video class maintains a list
of RenderableImages and operates on them when the user
instructs the program to create a rendered video. OpenCV is
utilized to split the input video into individual frames, and
based on these, we construct the source-destination pairs re-
quired to construct the subsequent RenderableImages that
will eventually make up the video.

After a video has been read in, then all a user has to do is
call the render () function and specify the style of rendering
they desire the output to be. Similar to all the structures
above, we aimed to abstract away the minutiae of OpenCV
and numpy, and this further exemplifies how we have done
this successfully.

5 ALGORITHMS

Rendering the non-photorealistic images of the input image
or video is primarily accomplished through the use of two
major functions: paint () and paintStroke (). The paint()
function is responsible for traversing the image, comput-
ing the error between the source and the current painting,
and calling paintStroke() which generates BrushStrokes
and returns them back to paint (). After all of the strokes
are computed for a given brush size, paint() then calls
renderStroke () which simply interpolates the brush stroke
and outputs color where the stroke should be drawn on the
output image. After both of these functions have terminated,
the pinkCorrection() routine is ran to eliminate visual
pink artifacts due to the algorithms not painting over certain
areas in the image.

5.1 Parameters

Each style that we are able to render is characterized by a
parameterization which captures the nuances and features
of given brush strokes which typically make up paintings of
the specified style.

5.1.1 Approximation Threshold (T). This parameter defines
how similar the painting and the source must be. If a higher
value of T is specified, then a more coarse approximation of
the image is painted.

5.1.2 Brushes (b). The list of brushes specifies the different
radii that will be used to generate brush strokes for the image.

Christoforides | Aikens

5.1.3 Curvature Filter (f;). The curvature filter parameter
specifies how much to constrain or emphasize the stroke
curvatures.

5.1.4 Gaussian Kernel Size (Blur Factor) (f,). Smaller values
for f, produce more noise in the rendered image while larger
values generate less noise in the rendered image.

5.1.5 Minimum Stroke Length. This value is the smallest
number of control points that a given stroke is allowed to
have before being returned to the paint () function.

5.1.6 Maximum Stroke Length. This value is the largest num-
ber of control points that a given stroke is allowed to have.

5.1.7 Temporal Error Threshold (T,). In Hertzmann’s thesis
[6], a difference masking technique to improve temporal
coherence when rendering videos is defined. This parameter
defines how much difference is allowed from frame to frame
in order to justify creating a new paint stroke within a given
region.

5.2 paint()

The paint() algorithm is responsible for determining if a
brush stroke should be applied to a given area and to what
point the brush stroke origin should be. It breaks the image
canvas up into a grid, with each grid block the size of the
provided radii. If a video is being rendered, a difference mask-
ing threshold is also applied to determine if paint should be
applied in a given grid block.

For each brush size, provided by the painting style type,
a Gaussian blurring of the source image is performed. The
Gaussian blurring kernel is calculated to be the size of F, *
Radii where F, is defined also by the painting style laid out
in the Hertzmann publications [5] and [6]. This Gaussian
blurred resulting image is then used to determine the differ-
ence between the current canvas at a given iteration and of
the source. This error is calculated by taking the euclidean
distance of the grid block region (which is defined as M in
the equation below). We split the comparison images into
their corresponding RGB values and then perform the eu-
clidean distance for each pixel. This can be improved by
using Numpy operations in order to get the specific channels
without having to create copies of the data.

D \/(11, S 12,7+ (I — 122 + (11, — 12,2
xX,yeM
We use this computed sum to compare against an Approx-
imation Threshold as defined in section 5.1.1. This value is
pre-defined for every paint style as provided by Hertzmann
[6]. This comparison classifies whether a brush stroke should
be generated within this grid block. If the error calculated
from the summation above is greater than the Approximation

Artistic Renderings For Images and Video

Threshold then the error for the given grid block is too large
and should be adjusted with a new paint stroke.

For videos, as mentioned briefly above, we have an addi-
tional check to improve temporal coherence. This check uses
the same logic as euclidean error calculation but instead of
comparing against the Gaussian blurred source, we compare
against the previous frame using the Temporal Error Thresh-
old (T,). This lessens the amount of paint that is allowed to
be painted from frame to frame, ensuring that only large
differences are painted.

For grid blocks that pass the Approximation Threshold
test we determine which point to begin a brush stroke by
determining the pixel within the grid block that has the
largest euclidean distance (representing error in the current
canvas). The paintStroke() procedure is then called using
this point as a starting reference.

5.3 paintStroke()

The paintStroke() algorithm is responsible for generat-
ing brush strokes which are later employed by paint() and
renderStroke() to output them to the canvas in a random-
ized order.

This algorithm requires the specification of an initial point
(%0, o) so that it is able to compute what color to make the
stroke and where to start it. It is important to note that the
color is computed from the blurred reference image and
not the actual source image, so the identified color may not
always be exactly the color present in the source image. After
adding the initial point to the list of control points in the
BrushStroke object, it then computes both the horizontal
and vertical derivatives with respect the luminance channel
of the blurred reference image. Then the function performs
an iteration from i = 1...maxStrokeLength and computes
the next control points for the given brush.

5.3.1 Computing Additional Control Points. To compute ad-
ditional control points, the algorithm looks at the colors of
the current position in the canvas and reference image. If
we detect that the euclidean distance between the current
pixel in the blurred reference and the pixel in the canvas is
less than that of the color at the initial control point and the
current position in the blurred reference image and if we
already have enough valid control points in the brush, then
we just return the current brush.

If this is not the case, then we must look at the derivatives
of the image to generate a new direction to move in to then
generate a new point. We get the horizontal gradient value
(9x) and vertical gradient value (gy) and then take the normal
of this to be our dx, dy. If we see that we aren’t moving
enough (dxjgs; * dx + Y * dy < 0), then we set the current
dx and dy to the opposite direction (—dx, —dy). Once we
established a new direction to move in, we then compute

Advanced Computer Graphics, Spring 2019, RPI

a move amount by filtering the brush stroke according to
the specified curvature. By doing this and then normalizing
these results, we can use them in

X, y=x+Rxdx,y+Rxdy

to determine the point at which we want to generate the
next control point. At this point, we record the last directions
moved (dx, dy) and add the generated point to the list of
control points that the current BrushStroke object holds.

If we see that our derivative at a given point is 0 or that we
are trying to generate a control point out of bounds, we ter-
minate the function and return the generated BrushStroke.
Additionally, if we were successfully able to generate
maxStrokeLength control points, then we just return the
brush stroke then as well.

5.4 pinkCorrection()

Figure 5: Rendered image with pink canvas artifacts.

This routine is ran after the entire paint() function has
finished executing. It’s primary purpose is to remove visual
pink artifacts from the final rendered image. These artifacts
exist in the first place because sometimes the algorithms
will not paint over certain areas in the image, thus leaving
a default canvas color in its place (we chose pink to max-
imize contrast). Figure 6 shows how the algorithm works.
Essentially, we do a final pass over the final image and look
for all pixels that are the default background color. If we
find one of these pixels, we then average the colors of all
non-background neighbor pixels to compute a new color for
the identified pixel. This is only ran on the final, rendered
image, so we only incur the O(n?) runtime penalty once.

Advanced Computer Graphics, Spring 2019, RPI

+.+
4

gp-E

Figure 6: Visual representation of the pink correction.

6 RENDERING VIDEOS

Rendering videos is very similar to rendering still photos. For
the first frame in the sequence we render on a blank canvas.
For every following frame we use the "Paint over" method
as defined by Hertzmann in his thesis [6]. This method takes
each frame, where the canvas for the current frame is the
resulting rendering from the previous. This method of ren-
dering from frame to frame slightly increases the coherence
of the sequence. To further increase temporal coherence be-
tween frames we perform a difference masking as well. This
method, similar to the error difference calculation, as dis-
cussed in section 5.2 takes the difference between the current
painted canvas and the previous frame. This measure effec-
tively limits the amount of paint that can be applied to a
region if the region from frame to frame is similar. Although,
this won’t fully eliminate the effect of "flickering" between
frames as applying paint will create imperfections.

Current (Source Image)

A

A

= u
3 u
paint() w frameDif | —gp | 4P
Previous artistic rendering (Destination)
Frames

Figure 7: Flow of rendering a video.

7 CHALLENGES

7.1 Unclear implementation details

7.1.1 Different procedures defined by same author. In Hertz-
mann’s papers [5], [6] implementation details for paint()

Christoforides | Aikens

Figure 8: Buggy rendering of tomatoes in hand as
shown in figure 8.

and paintStroke() conflicted. These papers put forth differ-
ent procedures to render the painterly images. We first imple-
mented paintStrokes() from Hertzmann’s thesis [6], but
soon realized the results were not fully correct. After some
debugging we ended up implementing the paintStroke()
procedure from his other paper [5] which provided clearer
details and correct results.

7.1.2 Unspecified parameter values (specifically T,). The
threshold for difference masking between frames is unde-
fined (refer to section 5.1.7 for more discussion on this value).
We had to investigate and test with different values for the
threshold. Long video rendering times made this task diffi-
cult.

7.2 Difficult to debug

7.2.1 Long rendering times. Long render times made it diffi-
cult to identify bugs from code changes. This became rele-
vant, especially when rendering video, as our system renders
each frame (more discussion on rendering times in section
9).

7.2.2 Derivative (gradient) image calculation. For along time,
we were generating images where all brush strokes were
moving to the top right portion of the image. As shown in the
figure below, this prevented regions of the canvas from being
painted. In order to solve this we identified an area where
the absolute value of the gradient was being factored into
the calculation. After removing this, the generated results
were significantly better.

7.2.3 Error calculation between canvas and Gaussian. The
process of determining whether a brush stroke should be ap-
plied in a region is a defined by the summation of difference
between the current canvas and a Gaussian blurring on the
source image (more discussion on this in section 5.2). Initially
we defined the canvas background as white. When taking
the difference between a white canvas and an area in the
source image that also is white, the system would identify

Artistic Renderings For Images and Video

this area as being similar and would not paint. This resulted
in empty areas in our paintings that looked very unnatural.
In order to fix this we defined the canvas to be a color of very
high contrast with most of the images that we were running
rgb: (255, 0, 255) or hot pink. This was predefined as a result
of our observations.

Figure 9: Incorrect gradient calculation.

8 ANALYSIS

Figure 10: Comparison between our results (left) to
Hertzmann’s [6] (right)

Shown above is a comparison between our final impres-
sionist results and Hertzmann’s [6] results for the same cor-
responding source image. The comparison shown above is of
each paint layer (brush sizes of 8, 4, 2). A direct comparison
prior to the final layer is difficult to make as brush strokes
are applied randomly. Our final layer results prove to show
the equivalent level of detail, if not more. As mentioned in
future work, slight differences between our final results and
Hertzmann’s can be attributed to opacity and color jitter
parameters. Other differences between our implementation
and Hertmann’s is the color that we use for our canvas. The

Advanced Computer Graphics, Spring 2019, RPI

canvas color that we observed to generate the best result
was hot pink. Hertzmann doesn’t specify a canvas color in
either [5] or [6]. In addition to this, we struggled with gen-
erating a correct cubic spline for the brush path. Since all of
the control points are within the given radii for that stroke
we simply painted along the brush strokes connecting each
with a line. This proved to give very accurate results without
having to map the control points to a corresponding spline.
We initially investigated using SCI-PY to help map the points
along the spline but soon ran into issues with constraints
laid out by the library for the corresponding functions.

9 PERFORMANCE DISCUSSION

Table 1: Runtimes on Varying-sized Input Images (Im-
pressionist Style) on Intel i7-4790k

Input Image Size Runtime (seconds)

100x100 1.188
200x200 9.094
300x300 34.594
400x400 126.125
500x500 279.979

Run time for our implementation grows significantly as
input size increases. This is directly due to the brush size radii
that are required for each painting style. In impressionist, for
example, brush sizes are defined to be 8, 4, 2. Brush sizes 8
and 4 both render in relatively quick time. On the other hand,
when we get to the smallest brush size render time begins to
slow as the number of strokes that are generated in the final
pass is exponentially larger. This is a result of the grid block
size decreasing in size for each radii, and generating multiple
control points for each stroke. This is especially relevant in
the Pointillist painting style, where we have a fixed small
brush size that needs to be rendered nearly multiple times
per area region. For video, this is multiplied by the number
of frames that must be rendered. A video that is 12 seconds,
30 frames per second, would require that the algorithms be
ran 360 times. This is then multiplied by the resulting image
size cost per frame.

10 FUTURE WORK

While our current implementation is able to produce quite
pleasing rendered images and video, it is still limited with
respect to the number of effects that it is able to reproduce.

At the moment our solution does not implement brush
stroke opacity and therefore cannot achieve layering effects
that many artists use when painting an image. The lack of
this could also explain why we experience slight differences
from our outputs and the outputs from Hertzmann’s work

Advanced Computer Graphics, Spring 2019, RPI

A

Figure 11: Example of pointillist randomized color jit-
ter present in actual artwork. Théo Van Rysselberghe,
His wife Maria and daughter Elizabeth, 1899.

in [6]. We additionally do not implement the randomized
color jitter effect described by Haeberli in [4]. This is very
noticeable in our results for pointillist images since all of
the points we generate are solid colors. With respect to how
artists actually paint in the pointillist style, this is not how
it actually works; sometimes there are perturbations in the
quality of the paint or canvas which leads to a different
color being placed at the specified point. This can be seen
in figure 11. Besides this, further work can be done to add
an extra parameter which constrains the total number of
allowed colors in the image. It is not feasible or practical
to make every new point on the canvas a different color,
thus artists reuse colors in creative ways to achieve the same
effect without utilizing an extraordinary amount of colors.
By including these features, there is a large possibility that
the quality of our rendered images and video would be much
more similar to those actually painted by artists in the real
world on physical mediums.

Moreover, a better strategy could be researched to select
a more appropriate background color for the initial blank
canvas. We chose pink since we believed it to cause the most
contrast between the source and canvas, but in reality, this is
not always the case. A pre-processing step could occur on the
image and a best suited color could be chosen which provably
causes the highest level of contrast to occur between the
source and blank canvas. This could be done by identifying
the color palette of the image and calculate or use online
resources to determine colors of highest contrast.

With respect to temporal coherence, our method reduces
a minimal amount of noise; the video is largely unchanged
and noticeable jittering in the video is still present. While it
is impossible to remove all jittering, we believe that further
improvements can be made to the temporal coherence com-
putations which would generally increase the noise present
between frames. Another thing to consider is the fact that

Christoforides | Aikens

our method only considers frame-to-frame coherence and
not holistic video coherence from start to end. A natural
extension to this algorithm would be to devise a strategy for
trying to achieve coherency across the entire input space in
the video rendering setting.

Additionally, further work can be put into general opti-
mizations which would make the rendering process signif-
icantly faster. As described in Hertzmann’s [6], we could
utilize a summed-area table to reduce the amount of com-
putation necessary to detect errors between the source and
canvas being painted to. At the moment, rendering large im-
ages (~ 1000x1000) or videos takes an inordinate amount of
time, so this optimization could truly be worth while so that
larger inputs can be processed in a more efficient manner.

11 PROJECT ROLES

The following section describes what each member of the
group contributed to the project.

11.1 Alexander D. Christoforides

Figure 12: Impressionist rendering of Alexander D.
Christoforides

Alexander D. Christoforides was responsible for develop-
ing the required data structures (Image, BrushStroke,
RenderableImage, Video) to facilitate the efficient render-
ing of both images and video. Additionally, Alexander wrote
the logic for the paintStroke() routine and developed the
functions for rendering video as well instead of just images.
Lastly, he performed a much-needed refactor of the program
so that it matched the overall architecture that both he and
Andrew initially devised.

Artistic Renderings For Images and Video

11.2 Andrew Aikens

Figure 13: Impressionist rendering of Andrew Aikens

Andrew Aikens was responsible for the implementation
of the paint() routine and developed functions to manipulate
images that were required for paint() and paintStroke().
These include: Luminance, Gaussian blurring, Error differ-
ence, Difference Masking for video temporal coherence, Gra-
dient Calculation, and code optimization. Andrew also de-
vised code to take brush strokes that were generated and
randomly apply them to the canvas per layer.

11.3 Both

Both Alexander and Andrew spent countless hours debug-
ging the program and together devised the methodology to
perform the final-pass correction on the rendered image to
remove artifacts from the algorithms not painting over cer-
tain parts of the image. Additionally, they both put together
the presentation and final paper as well.

ACKNOWLEDGMENTS

To Barb Cutler and Evan Macius for providing the necessary
support and input required to make this project a success.

REFERENCES

[1] 2019. Expressionism. https://en.wikipedia.org/wiki/Expressionism
[2] 2019. Impressionism. https://en.wikipedia.org/wiki/Impressionism
[3] 2019. Pointillism. https://en.wikipedia.org/wiki/Pointillism

[4] Paul Haeberli. 1990. Paint by numbers: Abstract image representations.
In ACM SIGGRAPH computer graphics, Vol. 24. ACM, 207-214.

[5] Aaron Hertzmann. 1998. Painterly rendering with curved brush strokes
of multiple sizes. In Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques. ACM, 453-460.

[6] Aaron Philip Hertzmann. 2001. Algorithms for rendering in artistic styles.
Ph.D. Dissertation. New York University, Graduate School of Arts and
Science.

Advanced Computer Graphics, Spring 2019, RPI

Figure 14: Impressionist rendering of Licorice and
Nutmeg

o~

Figure 15: Each paint layer with pink correction

https://en.wikipedia.org/wiki/Expressionism
https://en.wikipedia.org/wiki/Impressionism
https://en.wikipedia.org/wiki/Pointillism

Advanced Computer Graphics, Spring 2019, RPI Christoforides | Aikens

11.4 Impressionist

Figure 16: Impressionist rendering results

Artistic Renderings For Images and Video Advanced Computer Graphics, Spring 2019, RPI

11.5 Pointillist

Figure 17: Pointillist rendering results

Advanced Computer Graphics, Spring 2019, RPI Christoforides | Aikens

11.6 Expressionist

Figure 18: Expressionist rendering results

	Abstract
	1 Introduction
	2 Prior Work
	3 Painting Styles Refresher
	3.1 Impressionist
	3.2 Expressionist
	3.3 Pointillist

	4 Data Structures
	4.1 Image
	4.2 BrushStroke
	4.3 RenderableImage
	4.4 Video

	5 Algorithms
	5.1 Parameters
	5.2 paint()
	5.3 paintStroke()
	5.4 pinkCorrection()

	6 Rendering Videos
	7 Challenges
	7.1 Unclear implementation details
	7.2 Difficult to debug

	8 Analysis
	9 Performance Discussion
	10 Future Work
	11 Project Roles
	11.1 Alexander D. Christoforides
	11.2 Andrew Aikens
	11.3 Both

	Acknowledgments
	References
	11.4 Impressionist
	11.5 Pointillist
	11.6 Expressionist

