
Ray-Traced Constructive Solid Geometry

Audrey Baxter, Lorelei Wright
Rensselaer Polytechnic Institute

Figure 1: A simple die created as a test scene

Abstract

This project presents an implementation of construc-
tive solid geometry (CSG) for ray-traced rendering.
Our first challenge was extending the existing code
base to allow for parsing of constructive solid geome-
try trees. Then, we extended the intersection testing
to record spans of intersection with primitives. Fi-
nally, we implemented the union, intersection, and
difference set operations on collections of spans to re-
solve the intersection of rays cast through construc-
tive solid geometry objects, and identify the true sur-
face of the object for rendering. Our implementation
supports reflection, including self-reflection, and can
assign different materials for each primitive in the
constructive solid geometry tree.

Keywords: ray-tracing, ray-casting, constructive
solid geometry, CSG.

1 Introduction

Constructive solid geometry (Requicha 1977) is a
method of modeling which uses the three 1 binary set
operations union (S ∪ T ), intersection (S ∩ T ), and
difference (S−T ) to compose primitive objects such
as spheres, cubes, and cylinders into shapes which
would be prohibitively complex to model purely with

implicit geometry. CSG allows for modular com-
position, that is, CSGs may reference and be com-
posed of other CSGs, building a structure most con-
veniently represented by a tree such as the one below.

Figure 2: A CSG model with its associated tree

Constructive solid geometry is a form of solid mod-
eling, wherein structures are described in terms of
volumes rather than surfaces. This means that any
arbitrary point in space can be categorized as in-
side or outside of the object. For our use case, this
is an advantage over describing complex models as
meshes because significantly fewer rays have to be
cast to determine the final intersection point.

1A complement operator (¬S) is not necessary, as it can be represented using existing operators with DeMorgan’s Law. A
similar process can be used to eliminate difference (Duff 1992), but we found difference too practically useful to leave out.

1



2 Related Work

Constructive solid geometry is only one of several
ways to represent solid objects. Others include
boundary representations (b-reps), sweeping, para-
metric surfaces, cell decomposition, spacial occu-
pancy enumeration (SOE), octrees, and binary space
partitioning trees (Foley et al. 1990).

In the arena of constructive solid geometry in par-
ticular, most advancements are in adjacent territory
due to the relatively long-standing nature of ray-
traced solutions to CSG rendering:

• Wyvill et al present an extension of CSG with
several more operators – including blending,
tapering, and twisting – which allow for greater
expressivity in models (Wyvill, Guy, and Galin
n.d.).

• Chen and Tucker support “blobby” models
by representing objects as a continuous scalar
field in R3 rather than as a binary classifica-
tion, and also utilize volumetric textures for
materials (Chen and Tucker 2000).

• Many authors have proposed several different
techniques of boundary evaluation, or generat-
ing a triangle mesh from a solid model. This is
a complex problem with active research efforts
due to the difficulties in balancing speed and
fidelity. (Zhou et al. 2016).

3 Implementation

Constructive solid geometry has been proven ex-
tremely well-suited to ray-tracing, and a general so-
lution to CSG-ray intersections was introduced in
the very first paper to use the term “ray-casting”
(Roth 1982). This project implements this classic
solution using C++ and an OpenGL frontend, build-
ing off a simple ray tracing engine written for an
assignment earlier in the semester.

3.1 OBJ Extensions

That earlier assignment made several additions to
the stock OBJ spec to make it more suitable as a
scene representation, including an ad-hoc material
system, an embedded camera and background color,
and syntax for several types of implicit surfaces.
This project continued this by adding a handful of
new extensions. The first addition was the inclusion
of an axis-aligned box primitive, defined by its cen-
ter and extents. For example, the line b 0 1 0 5 2 2
defines a box at (0, 1, 0) with a width of 5 and height
and depth of 2.

Next, a keyword was added for each operator: diff,
union, and intersection. These keywords are
called with prefix notation and take two objects (ei-
ther primitives or a nested CSG object) as argu-
ments. Whitespace is ignored, but is suggested to
keep track of the hierarchy involved. It also proved
advantageous to support comment lines, so as to not
lose oneself in a complicated tree.

d i f f
union

#sphere s
s 0 0 0 1 .5
s 0 2 0 1 .5

b 0 1 0 5 2 2

Figure 3: An example CSG tree with its rendering

CSG objects are parsed using a stack structure,
pushing new branches when a new operator is en-
countered and popping operators once both of its
children have been parsed.

3.2 Spans

In order to extend the ray tracer to cast rays through
CSG objects, we have to know what regions are in-
side the primitives and which are outside. To do this
with ray tracing, instead of keeping track of only the
first point where the ray hits the object, we also track
the point where the ray exits the primitive. This al-
lows us to store regions along the ray that are inside
the primitive. We call these spans.

For the spans, we use the existing Hit class, which
stores the position, normal, and material of the ob-
ject at the point of intersection. The Span structure

2



is a POD (plain old data type), simply storing one
Hit for when the ray enters the volume, and another
when it exits. This gives us not only the segment of
the ray inside the volume, but also the surface in-
formation (normal and material) at the intersection
point. This will be important later on when handling
the application of the set operations on collections
of sets.

Figure 4: Spans of each ray are highlighted in red

Although a query to all implemented primitives can
returns a maximum of one span, a query to a CSG
may return one, several, or zero spans. To account
for this, spans are accumulated in a collection as they
are found, namely a sorted list. As control flows back
up the tree after the span of each primitive is known,
this list gets modified and merged with other lists as
needed to resolve overlap or fracture of spans as a
result of the boolean operations.

Once this list of spans has flowed all the way back to
the tree’s root, we can determine the final, singular
intersection point between the ray and the geometry.
By storing the list of spans in sorted order, sorted
by how close the entering hit of the span is to the
camera, we can easily find the nearest span. Once
all the set operations have been applied to all of our
spans, we simply return the closest hit, entrance or
exit, as the final intersection. (Note that spans be-
hind the camera are ignored.) If this is a camera ray
rather than a shadow ray, this hit is used to shade
the sample produced by that ray.

3.3 Interval Operations With Spans

Recall that the set operations are applied to the
spans at the level of rays rather than to the volume
itself. The logic for each of the CSG operations is as
follows:

Figure 5: Interval operations on ray-cast spans

• Union: If the two spans overlap, return a new
span whose closest point is the min of the clos-
est points of the spans being combined, and
whose farthest point is the max of the farthest
point of the spans being combined. If they
do not overlap, return the original spans un-
touched.

• Intersection: If the two spans overlap, return
a new span whose closest point is the max of
the closest points of the spans being combined,
and whose farthest point is the min of the far-
thest point of the spans being combined. If
they do not overlap, return the original spans
untouched.

• Difference: If both spans have regions not cov-
ered by the other, clip the minuend span such
that it doesn’t overlap the subtrahend span.
If the subtrahend span is totally enveloped by
the minuend span, return 2 spans connecting
each of the minuend. If the minuend span is to-
tally enveloped by the subtrahend span, delete
it entirely. No span is returned.

3.4 Materials and Normals

An important consideration when applying set op-
erations is carefully handling normal and material
information. The simplest case to handle is the nor-
mal case. For union, we don’t need to adjust the
normal at all, as the closest hit will always be from
the first object intersected.

Intersection is trickier, and is the first case where we
really had to take care in handling normals and ma-
terials. Consider Figure 2. When the sphere and box

3



are intersected on the left side of the tree, the curvy
parts of the new rounded box should be blue like the
sphere, and the flat parts should be red like the box.
To do this, returning the max hit as described will
do the trick, as the hits contain material informa-
tion, and the maximum distance hit will contain the
material information for that primitive.

Difference again is another important place to be
weary. In Figure 2 again, on the difference operation,
we see that the green of the cylinders is “pasted”
onto the inside of the geometry. So, instead of sim-
ply clipping the span for the minuend object, we re-
place one of the minuend span’s hits with whichever
hit in the subtrahend span lies at the newly-created
boundary. However, the hit cannot be slotted into
the new span unchanged. Leaving it untouched leads
to artifacts where the normal are flipped. To com-
bat this, whenever we do this kind of “pasting” logic,
we negate the normal of the hit from the subtracted
geometry, ensuring our normal stays geometrically
valid.

4 Results

Figure 6: Union operator

Figure 7: Intersection operator

Figure 8: Difference operator

Figure 9: Difference operator with reflection

Figure 10: A die, using intersection and difference.
Note that the pips are carved rather than decals.

Figure 11: Unfortunately, CSG objects don’t work
as nicely with refraction as they do with reflection

4



4.1 Performance

Scene: dice (600x600px)

AA samples Shadow samples Render time

0 0 8.12s
0 1 11.46s
0 16 73.08s
16 0 102.5s
16 16 1135.16s

(Render time was measured with GNU time using
an Intel Core i7-6700HQ CPU)

5 Future Work

While we are satisfied with the results, this is still
a fairly simple project with much room for improve-
ment and/or expansion. The following potential im-
provements have been roughly partitioned into the
following three categories:

Interactivity: As it stands, CSG trees must be
specified by manually editing an OBJ in a text edi-
tor, as the modified format is unrecognizable to other
programs. Since there do not appear to be any open
standards for the encoding of solid models, the al-
ternative is making objects easier to create in the
program itself. Specifically, the addition of gizmos
to move elements around, and the ability to anchor
children to parents (so moving the root moves the
entire tree) would help greatly.

Performance: This program was created mostly as
an exploration, and was not implemented with speed
as a primary goal. This is especially clear with the
nearly 20 minutes taken to render the

Due to the nature of CSG objects as a fairly dense
cluster of primitives, the ability to quickly deter-
mine that a ray intersects with none of the primitives
would save a lot of calculation. The simplest way to
do this is with bounding boxes, especially since ray-
box intersection is already implemented. (If the ray
doesn’t intersect with the minimal box which bounds
all of its leaf primitives, then it cannot possibly inter-
sect with the object.) This is closely related to two
other potential performance enhancements: short-
circuiting and a general spatial accelerator.

Expansion: solid models have several interesting
properties that were not explored. Among them:

Since every point in the scene can be classified as
inside or outside the volume, the epsilon problem
can instead be replaced entirely by keeping track
of whether a ray is cast into or out of a solid.
When a ray is cast into a solid, all spans where
ray dir · Nsurface < 0 should be discarded, and
rays cast into the air should ignore spans where
ray dir · Nsurface > 0 , where Nsurface is the sur-
face normal at a span’s nearest intersection point.
When implementing, care should be taken that the
Nsurface is truly the surface normal of the entire CSG
object, and not merely the normal of the primitive
it intersects with.

Finally, since solid models can be carved and ma-
nipulated in ways that make 2D textures difficult
to make sense of, they are perfect candidates for
procedurally-generated procedural textures as pre-
sented in (Perlin 1985).

6 Conclusion

In this project, we were able to extend our exist-
ing ray tracing engine to support constructive solid
geometry. By expanding out ray casting to record
span information about the rays’ entire trajectory
through the primitives in a given CSG object, we
were able to implement the union, intersection, and
difference operator at the level of these spans. Then,
after casting rays through all the leaf primitives in
the constructive solid geometry tree, apply the op-
erations from the bottom of the tree, filtering up
to the top. By being careful with managing normal
and material information, we were able to crystallize
these spans into a single true intersection point for
near-seamless integration into the existing ray trac-
ing code.

5



References

Chen, M. and J. V. Tucker (2000). “Constructive Volume Geometry.” In: Computer Graphics Forum 19.4,
pp. 281–293.

Duff, T. (1992). “Interval arithmetic and recursive subdivision for implicit functions and constructive solid
geometry.” In: ACM/SIGGRAPH Computer Graphics 26.2, pp. 131–138.

Foley, J. D. et al. (1990). Computer Graphics: Principles and Practice. Addison-Wesley.
Perlin, Ken (July 1985). “An Image Synthesizer.” In: SIGGRAPH Comput. Graph. 19.3, pp. 287–296. issn:

0097-8930. doi: 10.1145/325165.325247. url: http://doi.acm.org/10.1145/325165.325247.
Requicha, A. A. G. (1977). Mathematical Models of Rigid Solids. Technical Memo 28. Production Automa-

tion Project, University of Rochester.
Roth, S. D. (1982). “Ray casting for modeling solids.” In: Computer Graphics and Image Processing 18.2,

pp. 109–144.
Wyvill, B., A. Guy, and E. Galin (n.d.). “Extending the CSG tree: warping, blending, and Boolean oper-

ations in an implicit surface modeling system.” In: Computer Graphics Forum 18.2 (), pp. 149–158.
Zhou, Qingnan et al. (2016). “Mesh Arrangements for Solid Geometry.” In: ACM Transactions on Graphics

(TOG) 35.4.

6


