Hand-Drawn Ray Tracing

Casey Conway and Jason Lee
Rensselaer Polytechnic Institute

il

Figure 1: Hatched reflecting spheres

ABSTRACT

We present a strongly parallelized implementation of a two stage
non-photorealistic ray-tracer designed to output rendered scenes
in a hand-drawn aesthetic. Our program is designed to run on
IBM’s Blue Gene supercomputer and takes advantage of a novel,
chunk-based bargaining system to maximize efficiency through
strategic load balancing. We present a metric for estimating the
cost of rendering each pixel, and we compare the performance of
various parallel optimizations to analyze the efficiency gained by
our final algorithm.

KEYWORDS

ray tracing, non-photorealism, hand-drawn, parallel

1 BACKGROUND

Ray tracing is a well studied technique for rendering high quality
images with global illumination. First introduced in [5], it allows
the detailed rendering of reflective and refractive surfaces as well
as realistic shadows. [2] expands the method with stochastic tech-
niques to include features such as anti-aliasing, soft shadows, and
glossy reflections. We implement the stratified sampling techniques
of [2] to try and reduce the noise and clumping artifacts introduced
by adding randomness to the rays.

Ray tracing works by shooting rays from the camera position
towards the scene through a grid of output pixels. The shading of
each pixel is determined by the computations of each ray, which re-
cursively construct an exponentially expensive ray tree throughout
the environment. Each ray is cast through the scene and terminates
when it hits an object. Depending on the material properties of the
hit surface, it may produce additional rays to account for reflective
bounces or shadows. Shadows are computed by shooting more rays
from the hit surface towards each light source, and calculating the
percentage of unobstructed rays to approximate the amount of light
received at that particular point.

We extend this ray tracing implementation to include silhouette
edge detection as described in [1] to determine the locations of
mesh boundaries. This step is succinctly summarized by casting an
extra stencil of rays for each pixel to determine if an edge should
exist based on the percentage of hits from different objects. We
require harder edges on our objects to help identify the borders

between foreground and background objects when our hand-drawn
step occurs.

Our final post-processing step makes the rendered images look
hand-drawn by applying a similar technique as introduced in [3].
Although the authors’ contribution is made towards real-time ap-
plications running on the traditional graphics pipeline, we are able
to successfully adapt their technique to be used in ray-tracing. We
overlay a paper shader based on Perlin noise to complete the simu-
lation of a real hand drawn image.

2 OVERVIEW

Our algorithm accepts input files that are in the . obj format. It first
exports a render of the given scene into a . ppm image file using our
parallel ray-tracer implementation. This is a highly configurable
and robust system that allows for the specification of various pa-
rameters, such as the camera position, the direction the camera
should face, toggleable soft-shadows, the quality of the shadows,
the number of reflected ray bounces, the number of anti-alias sam-
ples, the thickness of silhouette edges, the ambient lighting values,
and the resolution of the output image, among many others.

On a whole, ray tracing is embarrassingly parallel as each pixel
can be computed independently without needing information from
surrounding pixels. This fact allows us to easily divide work be-
tween ranks (processes) and allow for parallel speedup to occur.
However, a naive partitioning of the pixels results in very poor load
balancing for most images. This can result in processes finishing
earlier than others and then idling for the remainder of the computa-
tion instead of actually working. We discuss in detail below a more
complicated algorithm with complex inter-rank communication
and threading to achieve full system usage.

Our raytracer, which uses a message passing library known as
MPI to achieve parallelization, will produce a rendered, photoreal-
istic output image. For many use cases, this is a fine stopping point.
However, our particular project is more interested in producing a
non-photorealistic pencil shaded effect to make 3D scenes seem as
if they were drawn by hand.

To achieve this, we have a post-processing pipeline to generate
bitmaps of pencil strokes corresponding to various light levels.
We then read in the ray-traced image, threshold it based on the
brightness of each pixel, and compute the final output by pulling
from the corresponding bitmap texture instead. In all, this is a much

cheaper operation than the ray tracing step and does not require a
supercomputer for reasonable performance times.

3 PARALLELIZATION APPROACH

We begin by describing the various levels of parallelization we
experimented with and examine the relative improvement gained
with each step. As our algorithm evolved in complexity, we were
able to more effectively utilize our runs on the supercomputer as
we improved the overall runtime.

3.1 Sequential

Our starting code base had no parallelization of any kind, so we
were able to run a few test cases on just our laptops to see exactly
how long a render would take. In one of our simplest examples,
shown in (Figure 12), a 4k render with 1024 shadow samples and
no anti-aliasing takes nearly 5 hours to compute. This scene only
has two primitives and a quad for the floor, so intersection tests are
very cheap to compute.

In examples such as the watchtower (Figure 9), we have many
more potential collisions and thus each ray is much more expensive
to compute. There are many very good solutions to this problem,
such as using octree or kd-tree spatial data structures, but we cur-
rently do not have those implemented due to time constraints. There
are numerous papers out there which implement these common
data structures, and we just note that our version is not as efficient
as we would like it to be. As such, the much higher cost of each ray
due to collision checks leads to more complicated test cases being
infeasible to render at higher resolutions on a single core. Anything
higher than about 2000 faces is out of our render time restriction.

3.2 Naive Parallel

The most obvious approach towards parallelizing raytracing is to
evenly split the problem space between each rank. We divide each
desired image into an n X m grid of pixels and assign each of the R
ranks nm/R pixels worth of work.

As simple as this approach is, it works quite well and is effective
in lowering runtime significantly. Ranks are able to compute sec-
tions of each image in parallel, and the more ranks allocated, the
quicker the overall computation completes. Results confirming this
speedup are available in section (8).

We envisioned some major issues to this approach before starting
work on the parallelism and they were confirmed once we began
running some test cases. The condition that each rank gets the same
amount of pixels to work with, regardless of the actual scene, is
non-optimal, because each pixel requires a different amount of time
to compute depending on the behavior and materials within the
target region. In consequence, some ranks can finish much more
quickly than others and lay idle until completion, increasing the
overall run times significantly. This problem and our first solution
is described in the next section.

3.3 Cost Metric

In the Naive parallel algorithm described in section 3.2, we point
out that some ranks may finish sooner than others. This leads to
having multiple ranks lay idle for potentially a very long time
until the render completes. This issue is caused by the different

costs to compute each pixel. In areas where rays only intersect the
background, processing for that pixel ends relatively early; there
is no need to compute expensive shadow rays, reflection rays, or
any of the instances of additional recursion. In areas of the scene
where there are reflective surfaces, the time required to calculate
the shading at each pixel is much more involved as it can result in
shooting thousands of additional rays.

This is further impacted by the principle of spatial locality. As
ranks are assigned contiguous regions of the output image to com-
pute, they often get lots of the same surface. As a result, a rank that
is assigned some background pixels (such as those assigned the top
portion of many of our test cases) will often get many background
pixels, while a rank containing pixels for a reflective surface will
usually need to compute a large majority of that expensive surface
just on its own. This compounding effect is more noticeable on runs
with fewer ranks, but is present on larger tests as well.

To combat this issue, we introduce a cost metric to more evenly
distribute pixels to each rank based on estimated cost, as opposed to
a simple pixel count. We experimented with a variety of parameters
and found a formula which estimates the cost of each pixel. To
achieve this, we first undergo a preprocessing step: we cast a single
ray through the middle of each pixel to see what type of object it
hits. If it doesn’t hit anything (i.e. only hits the background), we
consider the pixel cost to be the lowest possible. Otherwise we scale
the cost of hitting diffuse and reflective surfaces based on various
factors such as the number of potential bounces or the expected
number of shadow rays we might produce.

We then apply this cost estimation to the division of labor be-
tween ranks. More specifically, an equal number of “cost units”,
not pixels, will be distributed across the ranks, with the goal of
having each rank finish at roughly the same time. In casting rays
during the preprocessing step, an intersection checking expense is
incurred, which can lengthen the amount of time spent calculating
a metric. However, this step, like the rest of the raytracer, is paral-
lelized and its data results can be stored and reused after creation
for new renders with the same resolution and camera position.

3.4 Chunks

While a metric based approach is appealing, it is not particularly
effective when the approximations are poor. In larger scenes this
could result in much slower runs if the metric fails to accurately
predict the cost of pixels.

We instead shift to a more dynamic algorithm for managing this
load balancing problem. Here we begin to stray from the idea of an
embarrassingly parallel implementation into something with more
complicated inter rank communication. For our premier technique,
we need to introduce the idea of chunks.

Chunks can be considered smaller slices of groups of pixels than
the divisions described above. In our code, we generate chunks of
roughly fifty to one hundred pixels in size, which is a very small
percentage of the overall image. For reference, a 4K image is roughly
8.3 million pixels, so there would be about 83,000 chunks in our
average case.

Chunk sizes can be configurable based on the cost metric or
given a fixed size. In our code, we use the metric of section (3.3) to
have variable sized chunks to try and balance work even further.

With a good metric implementation, this could result in further
performance improvements.

3.5 Bargaining

Our major contribution in this project is our load balancing scheme
which we refer to as bargaining. In this approach, each rank is
given a queue of chunks to process while communicating with
other ranks to keep the contents of each queue roughly equal in
cost.

We achieve this by adding some additional threading to handle
communication between ranks. Each rank splits into two threads:
one is responsible for computing the shading, while the other han-
dles inter-rank communications to try and keep its queue balanced.
Every second, we send out a heartbeat message to neighboring
ranks on the left and right, as well as broadcast a message to all
ranks to try and maintain an idea of how much more computation
exists out there. If our upcoming workload is more than the global
average, we peel off a chunk from our queue and offload it to a
neighbor instead.

Over time, this technique results in a balancing out of the work
over all ranks, sort of like spreading butter. We start out with the
basic naive distribution and over time this iterative technique con-
verges to a healthier balance. As we’re constantly updating work-
loads, we ensure no rank ends much earlier than the rest as they
all finish roughly at the same time. This improves the results even
with a poor metric that has bad approximations of the actual costs.

4 BITMAP GENERATION

To create the hand-drawn aesthetic for rendered three-dimensional
scenes, we implemented bitmap generation similar to the method
described by [3]. To generate the many levels of density needed,
multiple bitmaps are created, each with a slightly different density
parameter. Markov chains are used to dictate the generation of
individual black pencil strokes on a white bitmap.

This behavior is defined by two random variables: the deviation
chance, or the chance at any one iteration for a pencil stroke to move
one pixel in a direction perpendicular to its prescribed direction,
and the terminate chance, or the chance that a pencil stroke ends,
or stops propagating, at any one iteration. In addition, there are
two integer variables - one dictates the minimum length of any
pencil stroke, which prevents pencil stroke termination until a
certain number of recursions has completed, and one dictates the
cell stroke density, or how often a new stroke should be generated
in the bitmap. This is done in a stratified fashion; therefore, the
bitmap is not too “clumpy”.

Having created multiple bitmaps with multiple densities, our
next goal is to calculate the approximate brightness level of each
pixel, which comes from our ray-tracing step. This will allow us to
decide which bitmap should be projected on that particular pixel.
We do this by calculating thresholds for various brightnesses and
mapping the corresponding bitmaps to those regions of the image.
We end up with an image such as the one in Figure (4). As bitmap
generation is not as computationally expensive as raytracing, it is
permissible to run this routine as a post processing step without the
aid of a supercomputer. Thus, we exclude the bitmap generation
from our parallel performance study.

Figure 2: Bitmap levels

4.1 Bitmap Issues

We encountered a few issues in our implementation of bitmap gen-
eration. One early bug involved diagonal strokes being generated
in the bitmap. This was because the random seeder was set up
in a way such that the random number generator would always
return the same value. This resulted in constant deviation from
the stroke’s original direction, as well as the bunching of multiple
strokes. This buggy implementation is shown in Figure 3.0ne of the
challenges with implementing bitmaps and thresholding is of en-
suring a smooth gradation between the lightest areas of the image,
as well as the darkest areas of the image. However, we decided that
it would be more important that the brightest areas in the image
remain at that level. Therefore, while we ensured that regions of
maximum brightness in the original image would not have any
bitmap applied, resulting in white areas in the processed image, the
upper bound for a region of the processed image to have a bitmap
applied remained independent of the brightness of the image. For
example, in the processed reflective spheres example (Figure 13),
the floor contains a distinct region with no bitmap, but the neigh-
boring regions have a relatively dark bitmap applied. Ultimately,
we find that this enhances the contrast of the image that we are
trying to create.

Figure 3: Bugged bitmap generation

5 EDGE DETECTION

The technique described in [3] includes an algorithm for detecting
silhouette edges to maintain clarity after bitmap application. Their
process works with the real time graphics pipeline, so they have
access to the actual edges of the mesh. In our ray-traced approach
we do not have that luxury, so we have to resort to a slightly more
complicated calculation.

We were lucky to find a paper [1] that achieves exactly what we
need. Their algorithm can detect all sorts of critical lines including
silhouettes (borders of objects over a background or other objects),
self occluding silhouettes, and crease edges (large variations in
surrounding normals). Due to time constraints, we only considered
major silhouettes.

To showcase the importance of edges, note figure (4). Here, we
render a scene with our technique without edges. Notice that the
larger sphere blends into the background surface, and it can be
difficult to differentiate where one object begins and ends. Figure
(5) re-renders the same image with an edge thickness of 0.01. This
updated version works really well with our pencil shader as it
includes the types of lines real life artists would use to sketch an
image.

o

]

Figure 4: Spheres rendered without edges: notice the blend-
ing of the larger sphere into the background

f I

LTy

o

]

Figure 5: Spheres rendered with edges

5.1 Stencils

To achieve these silhouette edges, we construct nine additional rays
for each pixel (none of which can generate a recursive bounce). We
shoot one ray through the center of the pixel and determine the id

of the object it hits. We then shoot eight arrays in a circle of radius
h around the center ray, with their positions calculated in image
space. We tally up the number of different object ids that they hit,
and note that a silhouette edge occurs when roughly 50% of the
rays hit different objects.

Figure (6) is a simple visualization of our process. The edge width
parameter h is simply the distance between the red center ray and
any black stencil ray. A larger value of h will result in more pixels
passing our edge test, which directly correlates to thicker borders
on objects. This parameter should be experimentally determined for
each particular scene. Our double sphere and watchtower examples
were run with h = 0.01, while our multiple spheres (figure 11) were
run with a larger value of h = 0.1.

If we have stencil rays hitting multiple different objects (in this
case, the existence of green and black colored stencil rays), we know
we should draw an edge. We only care about silhouette edges and
use only one ring of samples. For higher quality edges with more
potential features (e.g. self-occluding silhouettes), we direct you to
[1] instead.

Figure 6: Stencil rays: (a) relative positions of each additional
ray compared to the center ray (b) an example where the
pixel color would return black

5.2 Antialiased Edges

One of the major feature of [1]’s algorithm is their ability to have
smooth anti-aliased edges based on the percentage of the stencil
rays that hit different objects. Closer to 50-50 results in a harder

edge than an 80-20 split, as it corresponds to a darker shade of black.

As the stencil ray hits get less evenly balanced, we linearly decrease
the level of black into a lighter gray; this results in smooth curves
in the final output.

We originally tried to implement this feature, but ran into some
issues causing the doubling of edges (Figure 7). Time constraints
caused us to scrap this bugfix entirely, so instead we stuck with
non-antialiased edges. In our final results, we simply return a black
color if anywhere between 10% and 90% of the stencil rays hit two
different objects. We are reasonably happy with how the edges
turned out regardless of these issues, and the pixelation is not
particularly noticeable once we add the bitmaps on top.

Figure 7: A buggy attempt at anti-aliased edges

6 PAPER SHADER

To increase the realism of the hand-drawn aesthetic, we have an
additional post process step which adds a bit of modified Perlin
noise to simulate the image being drawn on a piece of paper (figure
8). A noise map is generated and further discretized to increase con-
trast of the paper texture, and then applied on top of the combined
bitmap image to yield the final result. This final image contains
the hard edges from the ray tracing, the hatching from bitmaps,
and the paper shader, the three core components that we set out to
deliver.

Figure 8: A small sample of the paper shader

7 PARALLEL PERFORMANCE RESULTS

We can examine the completion time of each rank based on our
various parallel algorithms by looking at the numbers obtained from
our sphere test case. We first show the unsorted completion time of
each rank, which is useful since we can identify which area of the
image was being rendered. On the left, the lowest ranks typically
handled the top of the image, which is mostly background. The
spikes in the middle of some graphs roughly correspond to ranks
which mostly calculated pixels for the two spheres, and the far right
of each graph corresponds to ranks which were assigned pixels
near the bottom of the image (most of which was a flat surface).
The second graph in each pair sorts the results by completion
time. Here we can analyze how long each rank stayed alive to
compute pixels relative to the lifetimes of the rest of the ranks.
Ideally, we want to achieve a balanced result with all ranks finishing
at the same time to avoid idling. Our earlier approaches fail to
achieve this standard, and we can see the balancing in action with
the last two graphs corresponding to our bargaining algorithm.
In [4], the authors investigate why their supercomputer was
taking much longer than expected to complete basic calculation op-
erations. Eventually, they discovered that OS noise, which matched
the frequency of their operations, was severely degrading perfor-
mance. In a previous implementation of the bargaining algorithm,
our messaging thread had an "eager" approach towards message
transmission and reception - after immediately processing messages
to or from neighbors, it would resume listening for and sending
information about the status of the ray-tracer thread on the same
rank. However, this eagerness was degrading the performance of
the ray-tracer thread, possibly due to OS scheduling - to the point
where runs were expiring as they exceeded wall clock limits. As
such, a one second delay introduced between the reception and

transmission of interprocess messages substantially improved the
performance of the overall ray tracing. A comparison between
naive, metric, and bargaining yields an easy observation - the naive
algorithm is certainly the worst - certain ranks finish much faster
than others. For example, certain pixels in an image may require
more processing as ray tracing may encounter materials that are
reflective, or need to be checked for shadows, and so on.

Of particular note is that our bargaining algorithm comes with
a minor performance hit compared to the other cases. We still need
to work on our threading and balancing code to ensure less impact
on the main rendering thread.

Naive
T

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank #

Naive (sorted)

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank # (not in order)

Time

Completion Time

350

400

1000

2000

3000

4000
Rank #

5000

Metric (sorted)

6000

7000

8000

1000

2000

3000

4000

5000

Rank # (not in order)

Bargaining

6000

7000

8000

1000

2000

3000

4000
Rank #

5000

6000

7000

8000

Bargaining (sorted)

400

@ 250

cond

(0]

Time (s

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Rank # (not in order)

8 PERFORMANCE SCALING

We have a single graph to demonstrate how our major bargaining
algorithm behaves with the addition of more physical resouces. As
expected, we are able to achieve great speedup by adding more
ranks. This is due to the ease in which ray tracing can be made
parallel and is a good confirmation that our algorithm actually takes
advantage of the existing resources.

900 Performance Scaling (Bargaining)

Completion Time (seconds)

n w Ey w (2] ~ @
o o o o o o o
o o o o o o o

o
o

o

256 512 1024 2048 4096 8192
Number of Ranks

9 TECHNICAL LIMITATIONS

We ran into a number of issues during this project that each needed
a substantial amount of time and effort to solve. For one, our start-
ing codebase (provided by Professor Cutler) depended greatly on
library calls to OpenGL, a massive library which was not compati-
ble with our goals of compiling for the Blue Gene. After stripping
out all OpenGL code and reimplementing the necessary camera
transformations, we also added a system to directly render results
into a ppm file.

Furthermore, we needed to backport much of the modern C++
code of the original codebase into C++98, which took substantial
effort. To complete the parallel portion of the project, we iterated

upon more and more efficient parallelization strategies as described
in section (3).

Originally, we had real time progress updates occuring at each
pixel with parallel file I/O; as each rank finished a pixel, it wrote the
output instantly. This gives us the opportunity to see the progress
at any particular point in time without issue, as well as stopping
early due to timeouts or crashes giving us (useable) partial results.

This real time updates originally were intended to serve as a
starting point for implementing very intuitive checkpointing. How-
ever, the Blue Gene did not allow us to have as many file I/O calls
as required for larger renders. We instead chose to write batches of
pixels at a time; in our final implementation we are able to leverage
the chunk system described in section (3.4) as a natural division
for combining the write calls into more efficient groupings. We
still maintain the visual “progress bar”, but the final results update
much slower due to the batching.

Our access to the supercomputer here at RPI is limited to runs
of 30 minutes in length. Rather than develop a specific system for
getting around this limitation (which can be as trivial as indicating
to our RayTrace routines which pixels to start and end at, rather
than rendering the whole scene), we decided to just keep smaller
scale test cases. Thus we could focus on making the few examples
we have look as good as possible.

Our skill with KTEX is still developing, so this writeup portion is
not as visually appealing as it could be. We chose to have images
relatively close (using forced “H” positioning) by the corresponding
text. This resulted in some unnecessary white space that the typical
“h” position hint would not generate.

10 FUTURE WORK

Our metric can be effective on some small examples, but has too
much variance in its efficacy when the number of shadow samples
goes up. Our collision detection algorithm is very primitive, as that
was not a priority focus of our project. The expense of checking
ray-object collisions adds up greatly with the sheer number of rays
we end up shooting.

We can dive further into the ray-traced edge detection paper to
obtain the full spectrum of edges required for many scenes. Our
mesh processing techniques currently only works on quad meshes,
so adding the logic for triangles is desirable but not done due to
lack of time.

We can try and apply our technique to produce color pencil
drawings, which we imagine should not be too difficult to achieve.
Further improvements on the bitmap generation can be in pro-
ducing smoother lines, more cohesive strokes, and a less pixelated
output. Lastly, our paper shader has some noticeable repetitions
in its generation. We think this may be an issue with the random
number generator we used, and we think that we could improve it
with some extra debugging efforts.

11 TEAM WORKLOAD

We decided to use the same codebase for final projects in two RPI
computer science courses: Parallel Programming, taught by Pro-
fessor Christopher Carothers, and Advanced Computer Graphics,
taught by Professor Barbara Cutler. Casey worked on the initial
porting of the ACG homework codebase to support the Blue Gene

architecture, as well as the naive and cost-metric parallel imple-
mentations. He also implemented the edge detection algorithm for
ray-traced silhouette edges. Jason worked on the bitmap generation,
as well as the chunk interface and bargaining parallel implementa-
tion and the paper shader. Overall, both members spent a combined
75 hours of work on this project, split roughly halfway between
the graphics component and the parallel component.

12 CONCLUSIONS

In this paper we present a strongly parallelized ray tracer which
uses intelligent load balancing to maintain equal work between
ranks. Further, we introduce a method for post processing ray
traced renders to redraw them in a non-photorealistic hand-drawn
result. Our tests examine the efficiency of our algorithm, and our
results produce high quality wallpaper-ready images of arbitrary
3D scenes.

13 ACKNOWLEDGEMENTS

We would like to thank Professor Cutler for the initial raytracing
code, Professor Carothers for his help with the supercomputer,
Dennis Haupt of Free3D.com for the wooden watchtower model,
and the invaluable assistance of Stack Overflow, without whom we
would be nothing.

REFERENCES

[1] A.N. M. Imroz Choudhury and Steven G. Parker, Ray tracing npr-style feature lines,
Proceedings of the 7th International Symposium on Non-Photorealistic Animation
and Rendering (New York, NY, USA), NPAR 09, ACM, 2009, pp. 5-14.

[2] Robert L. Cook, Thomas Porter, and Loren Carpenter, Seminal graphics, ACM, New
York, NY, USA, 1998, pp. 77-85.

[3] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein, Stylized rendering
techniques for scalable real-time 3d animation, Proceedings of the 1st International
Symposium on Non-photorealistic Animation and Rendering (New York, NY, USA),
NPAR 00, ACM, 2000, pp. 13-20.

[4] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin, The case of the missing
supercomputer performance: Achieving optimal performance on the 8,192 processors
of asci g, Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (New
York, NY, USA), SC *03, ACM, 2003, pp. 55-.

[5] Turner Whitted, An improved illumination model for shaded display, Commun.
ACM 23 (1980), no. 6, 343-349.

14 IMAGES

The remaining pages are dedicated to housing various renders of
our project.

Figure 9: Watchtower

Figure 10: Watchtower (dark version)

i A R L 2

SR g o
)

Figure 11: Multiple spheres (low shadow samples)

Figure 12: Reflective spheres (no post-process)

Figure 13: Reflective spheres (after post-process)

Figure 14: Mid-render progress of our bargaining algorithm; notice the diagonalization produced by sending chunks to neigh-
boring processes

Figure 15: Close up of a bitmap with pencil strokes

il Y L ra III‘JAAV; fl . i3 § T = =" IF%@}@%{“ i =g S
i 7& oz g 2 = = e i H—i e
== g; HEHR = T o -
1 N it nEs : 5 E LE
i, | - T ! I“ T ;: BT :Hi_H‘ 5
1 N x L] g TH Hi
H - i L ¥ S A = b
g = i s i \%T‘ 1 MN \|(}
o ﬁ E E
(| ‘ VH"‘; _g % 5
e oo ‘
LiMBasi it g = = %;
: EHj_- n ‘ Th
= .= ==l 1T |
i i i
i St Ll
5 i &
| T g ki i
i E: === mEE R
e] H HH= = 2
T T = “ . = NN : | |
= = 1 f L | Pt
u R nr i =2 E
;,:7 17 —HHAH | L] | —
i I8iE Bl EMiE = L
R R o . iy
==
T I % = s
JE LI .
o e i
‘$ _E J ; | Bi -;7I
5 i ! it : g e == i
HE e T . n [% El
=] 1_ il Il ik E
s : I L 1w ﬁ
55 1L MR oise Alim
ESiE: i |} L
'7ﬁ7 i 1 3 — B | I
i = s iE imwnmak| i
‘ e == i i i i
] 1=
. i } f
A 5 pmomil \—1:_1” iird N s
HITLT i 1 IIRTT == :‘ =5 =l 4 = e %_ 'i: AR
e = il |
j TR 4 R v A e e i UL S i

Figure 16: Reflective spheres with paper shader applied

Figure 17: Watchtower with paper shader

Figure 18: Watchtower (dark) with paper shader

	Abstract
	1 Background
	2 Overview
	3 Parallelization Approach
	3.1 Sequential
	3.2 Naïve Parallel
	3.3 Cost Metric
	3.4 Chunks
	3.5 Bargaining

	4 Bitmap Generation
	4.1 Bitmap Issues

	5 Edge Detection
	5.1 Stencils
	5.2 Antialiased Edges

	6 Paper shader
	7 Parallel Performance Results
	8 Performance Scaling
	9 Technical Limitations
	10 Future Work
	11 Team Workload
	12 Conclusions
	13 Acknowledgements
	References
	14 Images

