
Procedural Generation of Brick, Concrete, and Tiles as Textures

Chris Chen & Owen Elliff

29 April 2019

Abstract

In this paper, we describe the techniques used by others in the field of procedural texture
generation as concerning brick, concrete, and tile textures. We also follow this with description
of our implementation of procedural texture generation of said types of textures, as well as
description of our attempt at implementing some of the aforementioned techniques.

1 Introduction

As it stands, there is no single reliable method to procedurally produce textures for brick,
concrete, and tiles such that they can cover all variants of brick, concrete, and tiles as they exist.
Our goal was to come up with several different methods to produce non-photorealistic textures of
brick, concrete, and tiles. In the case of bricks, the most time and energy was put forth, as it was
found that many concrete and tile textures are simpler than brick textures with a lower variance
in types of features that need to be reproduced.

Of the many features that occur in bricks and brickwork, there are several more notable ones
that were our points of focus. In brickwork, bricks are often placed in a staggered pattern, their
most signature feature from afar. Looking at them from up close, bricks themselves are speckled
with very small, surface level holes. As well as this, the passage of times results in two other
distinct features; erosion of the edges of each brick, and short cracks that rarely span a whole
brick.

A crack is circled in red, erosion is circled in green, and holes are circled in blue.

We took three different approaches to these features. For the brickwork pattern, we focused
on a simple data representation, and later a more complex one. In the case of the various features
found in bricks, we used noise and simple stochastic processes. Finally, in the case of the overall
texture and color of the bricks, we used simple image processing of bricks and other images.

2 Background

There is much prior work that our methods build upon.

J. Legakis et al, 2001 introduces a method to generate 3D texturing that allows for multiple
kinds of patterns to be created and applied, by use of occupancy maps and pattern generators. An
occupancy map is a map of which cells are already occupied by their neighbors and which cells
still need to be textured, and pattern generators are higher-level structures that describe how an
object’s texture should be generated based on if that part of the object is a corner, an edge, a face
or based on it’s label. This allows for 3D texture to be generated for a model that have consistent
bricks between all faces, along with variable sized blocks and other ways to generate textures
based on the given pattern generator. We wished to implement this paper after generating our
base structure due to the paper’s relative complexity, but were unable to given the time
constraints.

Perlin, 1985 and Perlin, 2002 both introduced methods for producing believably random
noise by producing a field of gradient vectors so that any point has a specific value determined
by the direction of the nearest vectors. This is regularly used in two and three dimensions to give
procedurally produced textures and geometry that have a natural appearance to them. As it
concerns this paper, these forms of noise were both used in the cases of coloring the textures and
adding small holes to bricks and concrete.

Also important to this paper is the mathematical concept of the random walk. The random
walk is a simple process by which given a starting point in any dimension, a theoretical person
may take a step in any direction. Over a long period of time, these steps will produce an effect
similar to that found in nature. We used this to simulate the effects of erosion and cracking in our
bricks.

Finally, A. Lagae et al, 2010 focused on processing images to reproduce the patterns found
within them. It did this by treating each image as a combination of different wavelengths of
wavelet noise (R. Cook et al, 2005). They applied Fourier transforms to the images to obtain the
different weights for the wavelengths of wavelet noise that might exist in the image. This method
worked very well for images of grass and marble, but not so well for images with structure to
them. We hoped to use this method to achieve noise for individual bricks, concrete, and tiles
with mixed success.

3 Data Structures

To represent each brick or tile, we store the center of each tile as a two dimensional vector. The
points are generated intuitively and handle a number of bricks lengthwise and widthwise. If the
brick or tiles are staggered, the center points at the appropriate rows are offset as well. The width
and length of each brick are generated mathematically as well. This as well is intuitive to
generate. Each brick’s edge erosion is stored in a list of ints, and the method that they are
generated is by using random walk at the edges of each brick.

To generate the texture, we use two passthroughs, the first passthrough being rather simple
and the second passthrough being somewhat more complex. The first passthrough is to add the
mortar color to the entire texture, also using Perlin Noise to make it look less repetitive. The
second passthrough is going to each of the stored points. At each of those points, we generate
either brick, tile, or concrete textures. Then we set the texture’s color at each of those points
equal to the previously generated colors starting from the upper-right corner of each brick and
ending at the lower-left corner. If the option to use the generated image noise is selected, we use
that generated image noise instead of generating a texture for brick, tile, or concrete. However, if
the point would result in changing a color outside of the generated eroded edge, we instead
ignore that point. We simply compare the checked point’s x or y coordinate related to each
point’s eroded edge at it’s related coordinate.

The reason for these two passthroughs is twofold. First of all, it works rather well with
modifying bricks. If we wish to move the points to relocate the bricks and simulate them in a
different structure or manipulate them in another manner, we do not need to modify the mortar as
well. The second reason is that this structure is rather intuitive to understand. Each brick is
represented easily, and the manner that they are rendered upon the texture is also simple.

Another possible implementation that could have been done is the implementation presented
in J. Legakis et al, 2001. This implementation was attempted after the previous structures we
created to expand upon them, but lack of time resulted in an incomplete implementation.

4 Reproducing Features in Bricks, Extension to Concrete and Tiles

We worked primarily in a total texture resolution of 1024 by 1024 pixels. The values listed
below are dependant upon this and if the texture is scaled, the values should be scaled in the
same manner for the x and y of the new resolution respectively. As well, with all values listed
below, they can of course be modified as needed, but we chose these values as we found them to
produce our desired results.

To begin with, we initially focused on producing the color variance found in bricks. For the
color variance, we used 2D Perlin noise. We gave the noise the x and y values of each pixel on
each brick, multiplied those x and y values by values ranging from 0.01 to 0.004, finding 0.006
to be our preferred value, and then added a large, random offset to those now multiplied x and y
values. We then multiplied the returned noise value by a chosen red-orange color. This resulted
in each brick having a distinctive shade of color, as well as some variance in color over itself.
This also resulted in each brick not looking like they were part of one, larger brick that had been
cut into smaller bricks, as this is not an effect found in brick walls.

To simulate the small holes found in bricks, we used Perlin noise in the same way as before,
but instead multiplying the values by 0.1. The noise result was then cut off at 0.05 and set to 1 if
it was above that number. If below 0.05, the noise was then multiplied by 1 / 0.05 to achieve a
smoothness from the holes center. The obtained values for the holes were then used either to
multiply against the color, or to generate normals, or both.

Next, to generate the cracks, we pick a random point on the brick’s edge. We then choose a
direction to start as the normal against that edge. This direction serves as the starting point for a
random walk, where the walk is in a set increment of 1.5 and the direction is modified by .1 in
the x or y every step, coming with a 5% chance at any step for the crack to cease. The crack also

stops on reaching another edge. Giving the crack a small radius, we can once again either
multiply the color value by zero where there is a crack, or create normals from the cracks.

Finally, to generate each of the brick’s erosion at the edges, we apply random walk at each of
the brick’s edges. At each pixel, the random walk will either move one unit upwards or inwards,
not move, or move one unit downwards or backwards. Each of these moves are based on the
previous random walk position. The generated positions also tend not erode based on how much
the brick was previously eroded. For example if we are generating erosion at point (1, 4) in the y
direction, the higher the y value is from 4 the less likely it is to increase. We also introduce a
max erosion height to prevent extreme cases.

5 Image Processing

Our attempt to implement the image processing from A. Lagae et al, 2010 was unsuccessful from
one standpoint. However, in attempting to implement something similar to their method, we
came up with a simple solution to determine the wavelength of noise in any given image. The
solution goes as follows:
float v = 0

for each row i totalling in n rows
for each pixel j in row of pixels of length m

d = difference between this and last pixel in color value
d = d * (0.5)
v += d

v = v * (0.5)
repeat for each column

w = add v’s together and divide it by (n * m * 0.2)
w is your wavelength

The above solution manages to reliably find the wavelength of the Perlin and Simplex noise
in an image with the largest error we found being a 20% deviation from the correct wavelength.
We assume this not to be a new solution for this problem, but we came up with it ourselves and
have a poor understanding of why it works.

In order to achieve a more complex pattern for our bricks using this resulting wavelength, we
added two higher wavelengths of noise to the texture which gave a better looking brick.

6 Results

This is an example of other extensions we can do, such as a metal texture.

Here is a picture of a complete brick texture, with correct normals. We do not use the image
synthesizer in this texture.

An example of our brick texture applied to a 3D model

Image processing with input on the left, and the output on the right

A texture generated from feeding an image of normals into the image synthesizer.

A simple extension of the image processing to result in a potato.

An example of a generated brick texture, using our image synthesizer.
The given image, several bricks stitched together to create one, larger brick.

The resulting image.

An example of incorrect normals

An example of a fail case for the image processing

7 Conclusions

In conclusion, we managed to come up with two different solutions for creating believable,
non-photorealistic bricks, concrete, and tiles with noise and stochastic processes, as well as one
solution for representing the bricks as data. While there certainly are flaws in our

implementations, they do manage to produce results that are believable as bricks, concrete, and
tiles.

The work we’ve done here could certainly be used to produce more textures than those which
are shown, and the simple image processing could easily be used to quickly find the desired
overall wavelength of an image instead of needing to fiddle with the noise values manually as we
were forced to do for most of this project. As well, the data structure allows for brick placements
in ways that are more than just the simple tiling that we have. A possible expansion on that could
be to generate bricks in a circular formation or position them algorithmically. There is a lot that
this can be expanded upon in the future.

8 Citations

Lagae, A., Vangorp, P., Lenaerts, T., & Dutre, P. (2010). Procedural isotropic stochastic textures

by example. ​Computers & Graphics,34​(4), 312-321. Retrieved April 2, 2019, from
https://www.sciencedirect.com/science/article/pii/S0097849310000713?via=ihub#!

Lefebvre, L., & Poulin, P. (2000). Analysis and Synthesis of Structural Textures. ​Graphics

Interface 2000​. Retrieved April 2, 2019, from
https://www.semanticscholar.org/paper/Analysis-and-Synthesis-of-Structural-Textures-L
efebvre-Poulin/1015375e9b1b21f6d0669c148cc9b3790e6fcf9e.

Perlin, K. (1985). An image synthesizer. ​ACM SIGGRAPH Computer Graphics,19​(3), 287-296.
doi:10.1145/325165.325247

Perlin, K. (2002). Improving noise. ​ACM Transactions on Graphics,21​(3).
doi:10.1145/566654.566636

