
Advanced Computer Graphics Spring 2019 (RPI)

PhysIK: Physics based Inverse Kinematics for Character

Posing and Animation

Frederick Choi

April 27, 2019

1 Introduction

Posing and animating rigs can frustrating for anima-
tors. Among the tools they use to make things easier,
inverse kinematics solvers calculate the relative rota-
tions of rigid bodies connected by di�erent types of
joints which is useful for both robotics and anima-
tion. However, when posing a rig for 3D modeling and
animation, some inverse kinematics solvers can pro-
duce unpredictable and unintuitive results, especially
for large displacements.

Along with the issues above, IK solvers are also lim-
ited in their ability to create dynamic poses. It can
take a large number of target point speci�cations to
create a pose or animation that has feasible secondary
e�ects. For example, when a person walks, the legs
are not the only parts of the body that moves, but the
arms, torso, and head all move in reaction.

PhysIK is a physics-based character posing and in-
verse kinematics algorithm inspired by how artists
manually pose wooden mannequins. To pose a wooden
mannequin, the artist just has to move it into place.
Part of what makes it so easy to use is that we have an
intuitive sense of how physical objects work. Objects
in the real world do not jump around or pass through
themselves. In order to capture this intuition, PhysIK
simulates physics on a rig to move the rig into the de-
sired con�guration. By taking into account the form
and mass of the rig, PhysIK can accurately simulate
plausible secondary motions. For this reason, PhysIK
is useful for animation as well as static posing.

In addition, with a physics-based simulation, there is
no need to worry about whether a solution exists. Even
if the target pose is impossible, the simulation will not
break down. Instead, it will �nd a good compromise
between what the user speci�ed and what is physically
possible.

2 Background & Related Works

Inverse Kinematics is a topic that has been researched
over and over, with a myriad new improvements and
new algorithms for di�erent applications being pub-
lished every year. Popular algorithms tend to be of two
types: minimizers, and predictor-corrector type algo-

rithms.
Among the minimizer type algorithms, CCD (Cyclic

Coordinate Descent) is the most popular method of in-
verse kinematics today. One of the �rst papers to use it
for inverse kinematics is by Wang and Chen [1]. They
cite advantages over contemporary methods such as
gradient descent, where CCD has a much faster con-
vergence rate and does not have issues with singular
Jacobians. iTasC published by Smith et al. [2] pro-
vides a speci�cation for movement in robotics, which
can be used to solve IK problems. An implementation
of a solver that works on iTasC speci�cation that uses
a DLS (damped least squares) method is available in
Blender [3]. A performance comparison of PhysIK to
Blender's iTasC solver is included in the results section.
In the predictor-corrector vein of IK solvers, Kulpa

and Multon [4] have a hierarchical algorithm for IK on
humanoid rigs that is both quick but also calculates
realistic poses for humans. FABRIK by Artistidou
and Lasenby [5] have an inverse-kinematics solver more
geared toward robotics. These are both predictor-
corrector methods that approximate the solution with-
out transforming the problem into �nding a minimum
on a parameter space.
These algorithms are good �nding accurate solutions

quickly, but when discontinuities are present in the pa-
rameter space (e.g. angular constraints), the minimiz-
ers can fail to �nd a minimum, or they might end up
�nding a local minimum that is far from what the user
intended. They might also �nd a minimum that is in-
feasible to reach from the current con�guration, which
is particularly bad in animation, as this can lead to
unnatural-looking poses. The predictor-corrector al-
gorithms provide fast solutions to special cases of rigs
that tend to avoid the above issues, but they do not
take human abilities into account and may produce
poses that have unnatural secondary movements, that
is, the rest of the rig may not react in the way the user
wants.
A physics based solution can take into account the

human form. There is a substantial body of research on
physics-based marker following, with a sizeable amount
motivated by the need for tools to translate motion
capture data into computer animation. Zordan and
van der Horst [6] published a method of marker follow-
ing by simulating spring forces on the surface of a rig

1



and using the ODE (Open Dynamics Engine [7]). They
do not include explicit constraints on the rig, such as
joint angles, and instead, rely on the input data and
damping forces to ensure a natural pose is computed.
They also o�er contact forces which allow for more ac-
curate interaction with the environment. Along similar
lines, Cooper and Ballard [8] published a marker-based
following algorithm that similarly constructs a physical
model of the human body, but instead of using forward
simulation, they compute the forces each joint would
have to produce to reach that marker. This makes for a
more realistic solution since the source of motion would
be from the rig itself, like a human with muscles. The
secondary motions it produces would also be more in
line with what a real human would look like. This al-
gorithm uses ODE to do both forward simulation and
inverse physics.
PhysIK uses its own physics engine to simulate for-

ward physics. Using Pickl's master thesis [9] as a ref-
erence for rigid body mechanics, and heuristics on the
transfer of forces between bones connected by joints,
a simpli�ed version of a dynamics engine was devel-
oped that automatically calucates inter-joint forces to
propagate motion from bone to bone. It is speci�cally
designed to work in the framework of Blender, but it
can be extended to any software with a consistent sys-
tem of local and global coordinates. It is also optimized
to be fast enough to be interactive despite the overhead
of going through the Blender API.

3 Algorithm

3.1 Overview

The following terms will be used throughout this paper,
and are borrowed from Blender's terminology. A rig,
also commonly referred to as a skeleton or armature, is
a set of bones, which in the case of 3D e�ects, is used to
control the overall shape of a mesh. Each bone has at
most 1 parent and any number of children. The local
transformations of child bones are de�ned relative to
their parent.
PhysIK solves for the transformation of each bone

relative to its parent such that speci�ed parts of the
rig are in their target position while satisfying angular
constraints. Angular constraints are de�ned per joint
and restrict the rotation of the bone into an interval
per axis (x, y, z) (relative to the parent).
The transformations are computed using a physical

simulation. Spring forces are used to coerce the rig into
the desired con�guration, while drag and other forces
are used to stabilize the simulation. The propagation
of motion between bones are computed after all forces
are applied, and this creates the natural motions that
PhysIK aims to simulate.

Objectives. The objectives of PhysIK are to be:

• Accurate. For static poses, the rig should converge
to a con�guration that is close to what the user
speci�es.

• Interactive. The algorithm should converge and
should converge fast enough to be interactive.

• Intuitive. The whole rig should react in an appro-
priate, physically intuitive manner without explic-
itly specifying secondary movement.

Accuracy can be evaluated quantitatively. Intuitive-
ness will be evaluated qualitatively by comparing it
with other IK solvers in Blender. While speed is also a
consideration, the only requirement is that it should be
interactive, since the limitations of the Blender plugin
API makes it di�cult to measure the true performance
of the algorithm.

Physics. A custom physics engine is implemented
where the objectives are to model rigid body physics
to simulate a rig. Spring forces (linear and non-linear),
inter-joint forces, and torsion springs are simulated.
Spring forces are used to coerce parts of the rig to their
target position. Inter-joint forces are used to propagate
the motion of one bone to other bones. Torsion springs
are used to enforce angular constraints.

Control Points. Control points are how the user
speci�es the �nal pose of the rig. A control point con-
sists of two parts: the attachment point and the target
point. The attachment point is on the rig, while the
target point lies somewhere in the space. In the phys-
ical simulation stage, the attachment point is moved
toward the target point by simulating a spring (linear
or non-linear).

Movement Interpolation. When the target point
of a control point is moved far away from a control
point (i.e. the angular displacement exceeds some
threshold) then the movement of the target point will
be interpolated over each iteration to improve the con-
vergence of the algorithm. Some interpolation schemes
that were investigated include a circular arc around the
center of mass, a circular arc around the head of the
bone, and linear interpolation.

Interface. Physics on the rig is simulated in real time
as the control points are dragged around. This allows
for live feedback to the user as they pose the rig. This
also allows the simulation to be recorded as an anima-
tion for easy secondary movement.

3.2 Physical Simulation

A physical simulation is used to pose the rig into a con-
�guration that approximately satis�es all constraints,
but in a way that is predictable. When an artist poses
a wooden model, the limbs do not jump around. Like-
wise, by simulating the bones of the rig, they move into
position in a temporally and spatially coherent manner
so they end up in a predictable position.
In order to run a physical simulation the following

forces were simulated: inter-joint forces to ensure
joints stay connected, spring forces to move parts of

2



the rig into place, and torsion springs to ensure angular
constraints are satis�ed. Damping was simulated in
order to ensure convergence. Sti�ness and mass are
simulated to better match physical intuition.

To clarify terminology, let the local �xed frame of
a bone be a coordinate frame whose origin coincides
with the center of mass of the bone, and is �xed with
respect to the bone.

Inter Joint Forces. In the simulation, bones are
treated as independent rigid rods. Below is the equa-
tion for the dynamics of a single bone (simpli�ed from
[9], derived from Newton-Euler equations). To sim-
plify calculations, the origin of the reference frame is
the center of mass of the bone.

acm = m−1Fnet

α = I−1cm(τnet − ω × Icmω)
(1)

where

acm = acceleration of the center of mass of bone

m = mass of bone

Fnet = net force acting on bone

α = angular acceleration of bone

Icm = moment of inertia about center of mass

τnet = net moment on bone

ω = angular velocity of bone

To ensure that the bones stay connected at their
joints, the acceleration at the point of contact should
be the same for each bone. Consider a point r in the
local �xed frame of the bone. The acceleration of the
point r can be found with the following formula:

ar = acm +α× r
= m−1Fnet + I−1cm(τnet − ω × Icmω)× r
= m−1Fnet + [r]T×I

−1
cm(τnet − [ω]×Icmω)

(2)

where [·]× is the cross product matrix.
Now suppose another force F is applied at the point

s in the local frame of the bone. Then the new accel-
eration ār at the point r can be calculated like so:

ār = m−1(Fnet + F )

+ [r]T×I
−1
cm(τnet + s× F − [ω]×Icmω)

= m−1Fnet + [r]T×I
−1
cm(τnet − [ω]×Icmω)

+m−1F + [r]T×I
−1
cm(s× F )

= ar +m−1F + [r]T×I
−1
cm(s× F )

= ar +m−1F + [r]T×I
−1
cm [s]×F

= ar + (m−1I3 + [r]T×I
−1
cm [s]×)F

(3)

where I3 is the 3 by 3 identity matrix.
Let M(r, s) = (m−1I3 + [r]T×I

−1
cm [s]×). Then

ār = M(r, s)F + ar (4)

Figure 1: Annotated diagram illustrating the
application of inter-joint forces

The above can be represented as an a�ne transforma-
tion to directly get the acceleration at a point r when
a force is applied at the same point:

A(r) = T (ar)M(r, r) (5)

Call this the force-acceleration matrix.
Suppose k bones B1, B2, ..., Bk are connected at a

joint. The following heuristic is used to ensure that
they remain connected. Inter-joint forces F1, F2, ..., Fk

are applied the corresponding bone such that:

F1 + F2 + ...+ Fk = 0 (6)

and
ā1 = ā2 = ... = āk (7)

Where ā1 is the acceleration of Bi at the location of
the joint. Let Ai be the force-acceleration matrix for
Bi where r is the position of the joint. Then the ac-
celeration constraint can be expressed as follows:

A1F1 = A2F2 = ... = AkFk = v (8)

Where v is some constant vector. Inverting each Ai,
the term for the forces can be isolated:

Fi = A−1i v (9)

Then since the forces should sum to 0, the following
relation is obtained.

A−11 v +A−12 v + ...+A−1k v

= (A−11 +A−12 + ...+A−1k )v = 0 (10)

Then v can be computed directly with the following:

v = (A−11 +A−12 + ...+A−1k )−10 (11)

3



Figure 2: An illustration of the spring forces
in a control point system.

Once v is computed, the inter joint forces can be com-
puted with eq. 9.

This enables the computation of the inter-joint forces
at a single joint after all other forces have been com-
puted. This can be extended to simultaneously solve
for all joints at once, but this would require the in-
version of a large matrix. Iteratively computing the
inter-joint forces at each joint approaches an approx-
imate solution, sacri�cing physical accuracy for speed
and simplicity. This loss of accuracy can lead to di-
vergent solutions, which are mitigated by control point
movement interpolation in the following section.

The inter-joint forces are thus computed for each
joint in multiple passes until the maximum di�erence
in acceleration between any two bones at any joint has
a magnitude less than some ε.

Control point springs. As stated before, a con-
trol point consists of a target point and an attachment
point. The attachment point, which is on the rig, is
brought to its target position (target point) by simu-
lating connecting the two with rest length 0. Two types
of springs were considered: linear, and capped-linear.
The forces are computed as follows.

Suppose a is the position of the attachment point,
B is the speci�c bone on which a is attached, and t is
the target position. A force F is applied on B, where
F is de�ned below for di�erent types of springs:

• Linear: F = −k(a− t)

• Capped-linear: F = −kmin(‖a− t‖, c)
[

a−t
‖a−t‖

]
Where k is the spring constant and c is proportional
to the maximum force of a capped-linear spring. Lin-
ear springs have the advantage that large displace-
ments cause larger forces spring forces that move the
rig into place faster. However, because the forces are
unbounded, there is a potential for large forces to cause
the simulation to diverge. Capped-linear springs solve
this issue by placing a maximum on the force that a
spring can apply. Speci�c examples of simulations with
both types of springs are in section 4 below.

Figure 3: An illustration of a joint that ex-
ceeds the maximum angle de�ned by an an-
gular constraint, and the simulated corrective
torque.

Torsion springs. Torsion springs are used to enforce
angular constraints. De�ne y as the axis pointing down
the bone, and let x, z be the axes perpendicular to
y and to each other. Note that these axes are local
to the bone, and change as the parent bone moves or
rotates. An angular constraint may be de�ned for any
combination of these axes and it constrains the angle at
the joint where the bone meets its parent to a certain
interval around each axis.
Suppose the rotation at the joint some axis v is con-

strained to [θmin, θmax], and the rotation about the v
axis is currently θ. Then a torque τv, proportional to v,
is applied to the bone and a torque of −τv is applied to
the parent bone, τv is de�ned below for di�erent types
of springs.

• Linear: τ = L(θ)v

where L(θ) =


−k(θ − θmax) if θ > θmax

−k(θ − θmin) if θ < θmin

0 otherwise

• Capped-linear: τ = min(L(θ), c)v

Where k is the spring constant and c is proportional to
the maximum force of a capped-linear spring. This τv
is calculated for each axis x, y, z to compute the total
constraint enforcing torque of τ = τx + τy + τz, which
is then applied to the bone, while −τ is applied to the
parent bone.
While capped-linear springs are more stable, they

are not as good at enforcing angular constraints be-
cause they have a limit on how much torque they can
output. Linear springs turn out to be stable enough
while e�ectively enforcing angular constraints.

Damping. Damping was applied at the ends of each
bone according to the usual Fdamping = −kv where v
is the velocity of the end of the bone. Angular velocity
was damped by halving the angular velocity at each
iteration.

3.3 Control Point Movement

When the user moves the target point, the actual
position of the target point used in the computation
of spring forces above is interpolated over a certain

4



number of iterations, with which the rest of the simu-
lation is run with the target point in its �nal position.
Three schemes of interpolation were examined: linear
interpolation, polar interpolation around the head of
the bone, and polar interpolation around the center of
mass of the rig.

For the following, suppose the target point was at a
position told and was moved to the position tnew. Also,
suppose the number of iterations to run is imax. Let ti
be the position of the target point used in spring force
computation at the i-th iteration.

Linear Interpolation. The linear interpolation
method simply moves the e�ective position of the tar-
get point in a straight line from told to tnew at constant
speed. Then ti be computed by the following formula:

ti = told

(
1− i

imax

)
+ tnew

(
i

imax

)
Polar Interpolation. This method moves the e�ec-
tive position of a target point in an arc around the
origin of rotation. The origin of rotation, which could
be the head of the bone of the center of mass of the
rig, may change at each iteration. The angle between
the interpolated target position and the new target
position (with the origin as the pivot) is varied at a
constant rate, while the distance from the interpolated
target position is also varied at a constant rate until it
matches the distance from the new target position and
the origin.
This is formulated mathematically as follows. Let oi

be the origin of rotation at iteration i. Then ti can be
described by the following recurrence relation:

t0 = told

ti+1 = riR(ni, αiθi)
ti − oi
‖ti − oi‖

+ oi
(12)

where

ni = the vector normal to ti − oi and tnew − oi
θi = the angle between ti − oi and tnew − oi

R(ni, θi) = rotation by an angle θi about the axis ni

and

αi =
1

imax − i
ri = (1− αi)‖ti − oi‖+ αi‖tnew − oi‖

To avoid dividing by 0, if either ti or tnew is too close
to oi, then the algorithm falls back on linear interpo-
lation.

4 Results

The rig in �gure 4 was the primary test case used to
evaluate the performance of PhysIK on the objectives
outlined above. It consists of 18 bones and 14 joints,

Figure 4: The rig used to evaluate the perfor-
mance of PhysIK.

with a maximum of 4 bones around a single joint. The
angle between the torso, the collarbone and hips are
�xed with 0 degrees of freedom. The elbow and the
knees have one degree of freedom and are constrained
between 0 (straight out) and 120 degrees on the axis
perpendicular to the length of the bone, and �xed on
the axis parallel. The head, hip, and shoulder joints
have 3 degrees of freedom and are unconstrained.

In each of the following examples, the ∆t used to
step the simulation was 0.05, with a damping coe�-
cient of 20, and a joint acceleration epsilon of 0.001 (in
arbitrary Blender units).

Accuracy. Figure 5 is a screenshot of a static pose
created using PhysIK. The 8 control points used to

Figure 5: A static running pose.

5



Figure 6: A comparison of linear (left) and
capped-linear (right) springs on an elbow con-
strained to 90◦.

create this pose all have spring coe�cients of 30.

Observe that rig coincides with the control points
on the right hand and on the feet. The control points
on the left hand and shoulder are visibly out of place,
but notice that they are too far apart to make a fea-
sible pose. This highlights the fact that PhysIK can
still produce good results even when the constraints
are impossible to satisfy.

For a comparison of accuracy on linear and capped-
linear springs, two examples were used. First, to evalu-
ate the accuracy of angular constraints, consider �gure
6. The rig in the �gure is a simple elbow rig, where the
angle between the bones is constrained between 180◦

and 90◦. Note that the con�guration de�ned by the
control points is impossible to reach without breaking
angular angular constraints. What is of signi�cance
here is the degree to which the angular constraints are
broken. A linear spring puts more stress on the tor-
sion spring enforcing the angular constraint than the
capped linear spring would, resulting in a joint that is
clearly overbent.

Another aspect of accuracy can be seen in the next
example with linear and capped-linear springs. When
the control point is instantly moved to a point far away,
the simulation initially diverges for the linear spring,
and converges to a strange pose, especially near the
elbow and hips (see �gure 7). When capped linear
springs are used, the algorithm converges to stably,
though it takes a few more iterations.

There are cases, however, where the algorithm fails
to converge entirely. When angular constraints are
stressed and one of the bones in the chain have enough
degrees of freedom, then oscillation can occur around
the control point. For example, in �gure 8, the tip of
the hand will oscillate around the target point inde�-
nitely. This is most likely caused by the inaccuracies
of Euler integration combined with the extra degrees
of freedom that allows for such behavior.

Interactivity. The poses above were created start-
ing with the pose in �gure 4, then adding and ma-
nipulating control points. The pose in �gure 5 was
completed in under a minute, with the simulation con-
verging than 3 seconds whenever a control point was
moved to its target position.

When using the pro�le module in Python[10] to eval-
uate the speed of the algorithm, it reported an aver-

age of ∼ 98ms per frame for the humanoid rig, with
∼ 70ms spent on computing inter-joint forces, with
around ∼ 20 passes per step.
The rig is simulated live while posing the rig, which

makes it easier to see how the rig will move into place.
It also leaves the overhead of deciding how many itera-
tions to run to the user (i.e. it runs until the user deems
that the system has converged enough). While this
may not be ideal (see discussion), it also helps to hide
the relatively long running time per step. When run
at 100ms per frame, the tool still feels smooth enough
and fast enough to use practically.

Intuitiveness. Intuitiveness is di�cult to measure
quantitatively and is up to the preference of the user.
Presented below �gure 9 are comparisons of Blender's
iTasC solver with the PhysIK algorithm on a pose with
a single outstretched hand. The angular constraints
are the same in both cases, and both have 3 points to
specify the position of the rig. Note how the shoulder
in the PhysIK pose is turned toward the viewer, and
the character is leaning slightly forward. As a bonus,
the head also has a slight tilt. Compare this to the sti�
pose computed by Blender's iTasC solver.
To see how control point interpolation a�ects the re-

sults, consider the following set of frames. Figure 10
compares polar interpolation about the center of mass
and linear interpolation. The control point is inter-
polated for the �rst 50 steps (250ms) and the rest is
simulated normally. Note how the linear interpolation
causes more secondary motion while the circular arc,
which would be a more natural path for the arm, re-
sults in a more natural looking pose.
As a �nal example, consider the following frames of

a sitting animation created with PhysIK with only a
single moving control point and 4 static control points
�gure 11.

5 Discussion & Future Work

PhysIK makes it easier to create poses from scratch,
with interactive simulations and force-based posing
making the who process of posing and animating more
intuitive. By simulating external forces, PhysIK mim-
ics the action of posing a wooden mannequin, result-
ing in natural poses with plausible secondary motion,
even with a small number of control points. It does, of
course, have its limitations.
The physical simulation in PhysIK can be sensitive

to a change in the damping coe�cient. If the damping
coe�cient is too large, then with the Euler's method
integration used in this paper, any slight movement is
over-corrected, and the resulting oscillations diverge,
rendering the tool useless. Too small, and the simu-
lation takes too long to converge. The ideal range of
values for the damping coe�cient depends on the scale
of the model and the mass of each bone. A way to au-
tomatically compute the ideal damping coe�cient or a
di�erent method of damping altogether would help to
make the tool even more intuitive.

6



(a) step 0, t = 0ms (b) step 1, t = 5ms (c) step 10, t = 50ms (d) step 100, t = 500ms (e) step 200, t = 1000ms

Figure 7: A comparison of linear (top row)
and capped-linear (bottom row) springs with
a large, sudden displacement of a control
point.

Figure 8: A con�guration where the tip of the
hand oscillates around the target point.

PhysIK also breaks down when there are too many
tight angular constraints which create a lot of torsion
forces. For example, consider a hand, where the carpals
are highly constrained in their relative rotations with
the metacarpals, which are in turn highly constrained
in their relative rotations to the wrist, or root node.
Small perturbations tend to be ampli�ed by errors in
integration, and any attempt to modify the rig using
control points causes the rig to explode. Perhaps better
methods of integration or enforcing angular constraints
can be explored to mitigate this issue.

PhysIK can also be slow. It may not be desirable
to have to wait for the rig to converge onto its target
points. In this case, it may be bene�cial to pair the
physical simulation with CCD or some other fast IK
solver. The challenge here would be �guring out when
to stop the physical simulation and switch over to the
other solver.

Figure 9: A comparison of PhysIK (top)
and iTasC (bottom) on a pose with an out-
stretched hand.

7



(a) step 0, t = 0ms (b) step 20, t = 100ms (c) step 40, t = 200ms (d) step 60, t = 300ms (e) step 80, t = 400ms

Figure 10: A comparison of polar interpola-
tion about the center of mass (top row) and
linear interpolation (bottom row) of the con-
trol point.

(a) step 0, t = 0s (b) step 40, t = 1s (c) step 80, t = 2s (d) step 120, t = 3s (e) step 160, t = 4s

Figure 11: Frames of a sitting animation

References

[1] L. . T. Wang and C. C. Chen, �A combined opti-
mization method for solving the inverse kinemat-
ics problems of mechanical manipulators,� IEEE
Transactions on Robotics and Automation, vol. 7,
pp. 489�499, Aug 1991.

[2] R. Smits, T. De Laet, K. Claes, H. Bruyninckx,
and J. De Schutter, iTASC: A Tool for Multi-
Sensor Integration in Robot Manipulation, vol. 35,
pp. 235�254. 03 2009.

[3] �Itasc(IKParam).� Blender 2.77.0 - API docu-
mentation, https://docs.blender.org/api/

blender_python_api_2_77_0/bpy.types.

Itasc.html, 2019-04-02.

[4] R. Kulpa and F. Multon, �Fast inverse kinemat-
ics and kinetics solver for human-like �gures,� in
5th IEEE-RAS International Conference on Hu-
manoid Robots, 2005., pp. 38�43, Dec 2005.

[5] A. Aristidou and J. Lasenby, �FABRIK: A fast, it-
erative solver for the inverse kinematics problem,�
Graphical Models, vol. 73, pp. 243�260, 2011.

[6] V. Zordan and N. van der Horst, �Mapping op-
tical motion capture data to skeletal motion us-
ing a physical model,� in SCA 03': Proceedings

of the 2003 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, (Aire-la-Ville,
Switzerland), pp. 245�250, Eurographics Associ-
ation, 2003. ACM Order No.: 428063.

[7] �Open dynamics engine.� http://www.q12.org/,
2003.

[8] J. L. Cooper and D. Ballard, �Realtime, physics-
based marker following,� in Motion in Games
(M. Kallmann and K. Bekris, eds.), (Berlin, Hei-
delberg), pp. 350�361, Springer Berlin Heidelberg,
2012.

[9] K. Pickl, �Rigid body dynamics: Links and
joints,� Master's thesis, University of Erlangen-
Nuremberg, 03-09 2009.

[10] �The Python Pro�lers.� Python 3.7.3 documenta-
tion, https://docs.python.org/3.7/library/

profile.html, 2019-04-19.

8

https://docs.blender.org/api/blender_python_api_2_77_0/bpy.types.Itasc.html
https://docs.blender.org/api/blender_python_api_2_77_0/bpy.types.Itasc.html
https://docs.blender.org/api/blender_python_api_2_77_0/bpy.types.Itasc.html
http://www.q12.org/
https://docs.python.org/3.7/library/profile.html
https://docs.python.org/3.7/library/profile.html

	Introduction
	Background & Related Works
	Algorithm
	Overview
	Physical Simulation
	Control Point Movement

	Results
	Discussion & Future Work

