Skeleton-Based Modeling of Characters

Héctor D. Rodriguez Figueroa and Etienne Morakotkarn

Abstract

Modeling a character in 3D has a different
process from drawing a character in 2D.
Whereas in 2D one starts with the structure of
the character before working on its form, the
process is reversed in 3D. In this paper we
present a software for skeleton-based modelling
of characters. This aims to be a new way of
creating 3D characters by starting with a
skeleton and adding meshes on each bone.
Through the process of mesh unification, these
meshes become one character capable of being
posed.

1. Introduction

In general, creation of 3D characters follows this
general workflow: first, the mesh is created,
which represents the character’s details; next,
the skeleton of the character is created, which
represents the inner details of how the character
moves and is structured. However, the creation
of 2D characters often follows a different
workflow: first, the core details and structure of
the character are hammered down in an initial
sketch; after that, the fine details of the character
are drawn on incrementally.

This project aims to experiment with the
creation of 3D characters using a workflow more
similar to that used to create 2D characters. In
this hypothetical workflow, first the user builds
a skeleton containing the core details of how the
character moves and is structured. Following
that, each bone of the skeleton is assigned an
individual mesh part. These mesh parts are
unified into one whole mesh that is then able to

be deformed according to its skeleton. This
process results ideally in a different kind of 3D
character from the ones made under a typical
workflow.

2. Related Work

The user-centered approach of our project takes
inspiration from the approach done by Teddy,
described in [4]. Igarashi et al. describe a tool
for 3D character creation based off of 2D pen
strokes. This shows another way 2D art
techniques have been brought into the third
dimension.

Much work has been done in the past on the
subject of mesh unification. Mesh unification
can be discussed as a subset of Constructive
Solid Geometry (CSG), a method of describing
surfaces as Boolean operations between two
other surfaces. In our case, we are looking at
unions, also known as an “or” operation. We
based our implementation of CSG with
triangular meshes on [2], which discusses CSG
on triangular meshes as a two-step operation:
mesh refinement, and triangle selection. Mesh
refinement is a process that modifies mesh
geometry so every triangle can be described as
strictly “exterior” or “interior.” Triangle
selection depends on the boolean operation in
question, and describes which triangles of the
refined mesh to keep. A union operation keeps
all exterior triangles and discards all interior
triangles. This process is described in Section
3.2.1.

[3] describes a similar process for applying
CSG operations on triangular meshes, in
particular, it describes mesh refinement in better
detail. It is not in the current implementation of



our project, however, its relevance to our project
is further described in Section 5.

Previous work has also been done on ways
to store skeleton data for efficient use in
animation and character creation. Seron et al.
propose an actor/skeleton tree hierarchy for use
especially in scene graphs. Their data structure
boasts real-time performance, and adaptability to
direct and inverse kinematics as well as motion
capture [5]. Our implementation of character
skeletons borrows heavily from their data
structure.

3. Implementation

Our implementation is written in the C#
programming language and renders with
OpenGL using the OpenTK binding library. The
user interface was created using the Windows
Forms library from the .NET Framework.

3.1 Data Structures

3.1.1 Mesh Unification

Several data structures were necessary for the
mesh unification process. Firstly, it was
necessary to have a data structure for the overall
mesh data. Meshes are stored as a set of vertices
and a set of indexed triangles. Vertices have two
attributes: a 3-dimensional vector for its
position, and an integer for its associated bone
index. An indexed triangle has 3 integers
indicating the index of each of its vertices. This
makes it possible to render larger meshes
without repeating vertex positions several times
in memory.

When performing the mesh refinement step
(described in Section 3.2.1), some additional
supplemental data structures were necessary. To
accelerate the identification of triangle
intersections, axis-aligned bounding volumes

and octree structures are used. An axis-aligned
bounding volume is represented as two points in
3-space, a starting point and an ending point.
Each of the starting point’s components is less
than or equal to the ending point components.
This allows for cheap point-in-volume and ray-
intersects-volume determination. A suite of unit
tests exists for this structure, however, one case
was not accounted for and as a result it is not
currently completely functional (specifically,
intersecting volumes where neither the starting
point nor the ending point are inside any of the
two).

Octrees split an axis-aligned bounding
volume into eight equal-volume axis-aligned
sub-volumes. Leaf nodes contain the indices of
the triangles that intersect the leaf’s bounding
box. These are used to quickly discard any
triangle u that definitely does not intersect
triangle ¢. This is because if the bounding
volumes of u and ¢ do not intersect, then u and ¢
do not intersect either. The functioning of this
was verified with verification of the triangle
classification algorithm, with progressively
larger and larger meshes.

The mesh refinement step also identifies
triangle-triangle intersection lines, which are
identified as collections of segment chains,
which describe an ordered sequence of
connected line segments (each represented as
two points in 3-space). These were tested with a
suite of unit tests.

Finally, the mesh refinement step culminates
in the triangulation of polygons, which are
represented as a linked list of polygon vertices.
Polygon vertices differ from regular vertices in
that they have no bone binding and that they are
classified as either reflex or non-reflex as
described in [1] and later on in Section 3.2.1.



3.1.2 Skeleton Structure

The data structure containing the skeleton is
based heavily off of the work of Seron et al., as
mentioned previously. However, it is worth
noting that this data structure was somewhat
simplified to remove elements we felt were
unneeded for this project. The basis of the data
structure is a tree with an Actor node at its root.
This node represents a character as a whole,
including their position in 3D space. It also
serves as the parent to the root bone of the
skeleton.

Meanwhile, each bone is represented as a
Node called a Skeleton Node. Each Skeleton
Node has one parent and potentially multiple
children Skeleton Nodes. The Skeleton Node
mainly keeps track of two matrices. First is the
offset matrix, which represents its default
position in comparison to its parent. Second is
the so-called skeleton matrix, which represents
how the skeleton has been additionally deformed
from its original position and rotation. The
skeleton Node additionally keeps track of which
Degrees of Freedom are enabled in order to
allow for restraining of certain rotations.

The Actor Node, as the parent to the
character tree as a whole, also serves a few other
roles not previously mentioned. For one, the
Actor Node keeps track of all of the Skeletons
under it, as well as their transformation
Matrices. Both of these are contained in separate
lists which are updated very simply through the
use of depth-first traversal. These lists minimize
the need for tree traversal which allows for more
convenient rendering among other things.

3.2 Algorithms

3.2.1 Mesh Refinement

Before meshes can be united, a mesh refinement
step described by [2] is undergone. This step

works to ensure that, given two meshes 4 and B,
every triangle in 4 can be described as either
“outside of B” or “inside of B,” and vice versa.
[2] describes a third classification, “on the
surface of B,” but this classification is, for our
intents and purposes, redundant.

Refinement of 4 to B is performed
independently on every triangle ¢ in 4. To refine
triangle ¢, we first check if ¢ intersects any
triangle u in B. t intersects u if any edge in ¢
intersects u, and vice versa. [2] describes a
process for determining whether an edge
intersects a triangle. An edge e intersects ¢ if: 1.)
both vertices of e are either on opposite sides of
the plane determined by ¢, and 2.) any of the
vertices of e is inside the angular zone of the
tetrahedron whose base is the triangle formed
from any edge of 7 and a vertex of e and whose
apex is the other vertex.

A vertex v is inside the angular zone of the
tetrahedron 7 if v is on the same side of the four
triangles that compose z. In the case that v is
coplanar to any of the triangles composing z,
then v is also considered to be inside the angular
zone of 7.

If no triangle is found to intersect ¢, then ¢ is
kept intact. Otherwise, we determine the line of
intersection that # makes along ¢ and keep track
of it. This line of intersection can be determined
in a three-step process. First, we determine
which of the edges of u intersect the plane
determined from ¢. Next, we find the the
intersection points of the intersecting edges of u
with the plane determined from ¢. Finally, the
points are clipped using barycentric coordinates
along the ray determined from these two
intersection points such that they now lie either
within or on the edge of ¢.

Once the intersecting segments are
determined, we join segments which share
endpoints into the segment chain structure



described in Section 3.1.1 and create polygons
out of these chains and the original triangle
geometry. To accomplish this, we walk along
the edges of ¢ starting from point 4, followed by
point B, and then point C, before returning to
point A. If we come across an endpoint of any
segment chain ¢ that intersects our current path,
then we logically split the execution into two
“processes.” The parent “process” will advance
to the other endpoint of ¢ but otherwise continue
its planned route, while the child “process” will
start from the found endpoint of o, continue the
planned route, but stop at the other endpoint of
o. This creates a set of polygons which have the
same winding order as the original triangle.

The final step of the triangle refinement
process is triangulation. Triangulation is
accomplished using the ear-clipping method
described in [1]. This process starts by
identification of the ear vertices in the polygon.
A vertex v is an ear vertex if it is not a reflex
vertex (i.e. its angle is less than 180°) and if
there are no other vertices within the triangle
formed from v and its two adjacent vertices.
Then, we can triangulate the polygon by
iteratively creating a triangle from every ear
vertex. As ear vertices get removed, non-ear
vertices may become ear vertices, so this
identification step must be performed again.
This results in a refined triangle where every
sub-triangle is either outside or inside B. A
simple example of such a result is shown in
Figure 1.

3.2.2 Mesh Unification

Once the mesh has been refined, mesh
unification is a relatively simple step. First, we
let A" = refine(4, B) and B' = refine(B, A). Then,
for every triangle ¢ in 4', if ¢ is outside of B’,
then we keep ¢. Otherwise, we discard ¢. The
same process is then performed for every
triangle u in B'. To determine whether ¢ is in B’,
we perform a point-in-solid test per [2]. This test

Figure 1 — Result of mesh refinement. The resulting
triangles are outlined in red for visibility.

1s based on the Jordan Curve Theorem, which
states that a closed curve divides its space into
two: an interior space and an exterior space. This
theorem also applies in 3-space with a closed
surface. Thus, we cast a ray from the centroid of
t along its normal and count the number of
intersections we have with B along the way. If
the number of intersections is odd, then ¢ is
inside B'. Otherwise, ¢ is outside of B'. The
generated mesh will then be composed of the
kept triangles and their vertices.

3.2.3 Vertex Association

In the workflow described in Section 4, meshes
are assigned to bones. This indicates which
geometry features should be moved along with
which bones. When a mesh is associated with a
bone, the bone index for each of the vertices in
the mesh is set to the index of the bone it is
being associated to. When meshes are united,
this bone association is preserved.

New vertices may be created during the
mesh refinement process. When this happens,
several schemes could be used to determine the
bone association of the newly-created vertex.
The crudely-implemented scheme in the
codebase as of this writing inspects the vertices
of all triangles that intersect the triangle
currently undergoing refinement and selects the
most frequent vertex index found. Some other
schemes that could have been followed are
described in Section 6.



3.2.4 Mesh Deformation

When deforming the mesh in order to reflect the
skeleton’s current pose, vertices take different
model transformations based on their associated
bone index. The transformation undergone is as
follows. First, we transform the vertex v to bone-
space. Let O; and S; be the offset and skeleton
matrices, respectively, for bone i. Additionally,
let O, be the cumulative offset transform matrix
for 7, and let j be the parent of i. Then, O, can
be calculated as the multiplication of the bone’s
offset matrix by its parent’s cumulative offset
transform matrix:

Oci = Oi X OC]'

The transformation of ¥ from model-space
to bone-space is the inverse of the cumulative
offset transform matrix of its associated bone.
Thus, ¥ transformed to bone-space vy is:

N

U—B) = Oci_l v

Once v is transformed into bone-space, we

transform it to its final position v'by
transforming it by the cumulative skeleton
matrix Sc;:

—
v =SC'

—_—
i VB

Where the cumulative skeleton matrix S, is
the multiplication of the bone’s parent’s
cumulative skeleton matrix SC]. by the bone’s

offset and skeleton matrices:
S Ci = S C}' O lS i

As there are relatively few matrices and
these matrices are used several times, a
transform matrix T; for each bone is calculated
on the CPU before rendering (as GPUs perform
poorly when doing recursive workloads). The
bone transform matrix is the total transform

matrix that transforms ¥ to v':

Ti = SCiOCi_l

4. Results and Workflow

Skeleton creation is functional, as is mesh
posing. However, mesh unification is currently
more broken than not owing to the complexity
of the process. Best-case scenario, random
triangles in the mesh will be erroneously
discarded. Worst-case scenario, the process
either hangs indefinitely or crashes. Debugging
work in the limited timeframe seems to point at
bugs in the octree implementation leading to
false positives and negatives. Figure 2 shows a
mesh without intersections being posed in the
pose editor. The individual body part vertices
move as expected with the bones. Figure 3
shows the same skeleton with different body part
meshes being posed. As these meshes now

aaaaa

Figure 2 — Posing a snake-like skeleton with non-
intersecting meshes.

Figure 3 — Posing a snake-like skeleton with
intersecting meshes



intersect with each other, the broken state of the
mesh refiner is now visible.

o Bonafdiner - o x

Il Aasign Mesh (gl Export 1o Porer

Foet Micsle 0)

Tearmiagor,

& wb e
Oertaton

- | [

Miowed Rotsicns

Hox FAmr Hmoz

s Ok Deiene Bore

Figure 4 — Bone editor window.

Although the mesh unification stage is still
incomplete, the end-user workflow of the tool is
in a functional state. The program starts in the
Bone Editor window, shown in Figure 4. On the
left side of this window is a 3D view with a set
of axes representing the X,Y, and Z axes, as well
as a single pre-placed bone (represented in the
unselected state as a line with blue squares on
each end). In this 3D view, as with other
windows in this software, the user can rotate the
camera by clicking and dragging the mouse.
Additionally, the user can zoom the camera in
and out by holding Shift while dragging the
mouse, and can translate the camera by holding
Ctrl.

On the right side of the Bone Editor window
is a panel with the hierarchy of the Skeleton
Nodes, under which are controls used for
placing new bones. The hierarchy can be
explored using the mouse; selecting a bone will
cause it to be highlighted in orange. Selecting a
bone in the hierarchy, and then clicking the Add
Bone button in the bottom right, will create a
new bone according to the control values, and
add it as a child of the currently selected bone.
The user can also press the Delete Bone button
to delete any bone other than the root bone,
which sets all of its children to be children of the

deleted bone’s parent, while keeping the
children in the same global position.

On the top left of this window is a button
labeled “Assign Mesh”. Clicking this window
while a bone is selected will bring up the Mesh
Editor window, shown in Figure 5, where the
user can position a mesh relative to the bone.
Closing this form will assign the mesh to the
bone in the Bone Editor as well. Various
controls are possible within this form; selecting
the folder will allow the user to select an OBJ
model from the computer to assign to the bone.
On the other hand, selecting the cube icon in the
controls toolbar allows the user to move the
mesh in relation to the bone (by holding down
Shift), and rotate the mesh around the bone (by
holding down Alt).

Going back to the Bone Editor window, the
last button on the toolbar opens the Poser. The
poser is similar to the Bone Editor, but instead
of allowing the user to add or delete bones, it
allows the user to rotate the bones according to
the constraints the user defined in the Bone
Editor by using the sliders in the bottom right. It
is also at this point that the program attempts the
mesh unification process, as described in the
previous section.

Bl Edit Mesh - o x
B Controk (@]9 Reset @ f View B @

Figure 5 — Editing a bone’s associated mesh.



5. Future Work

While the core functionality of this project has
been, for the most part, finished, there are quite
a few various areas to improve upon. Most
notably is the area of mesh unification, which is
still rather buggy and prone to mishaps. Late in
the project’s implementation period, an
additional source on CSG application on
triangulated meshes was found which has a more
thorough explanation on the subdivision of
intersecting triangles, specifically, a constrained
Delaunay triangulation can be performed on the
triangle and its intersecting edges [3]. This has
the advantage of handling closed intra-triangle
intersection lines, which do not intersect with
any of the triangle’s edges, and, as a result, are
not handled by our triangle refinement method.
Thus, rewriting the mesh refinement process to
use this alternative mesh refinement method can
be included as work that could be done.

Additionally, as can probably be clearly
seen in the images, the user interface could
definitely use some work; ideally the need to
type in values could be done away with in favor
of manipulating the bones directly through use
of mouse or other input devices. The windows
could also probably be combined in some way to
make them more convenient, and it could be
made easier to modify skeleton offsets after they
are placed. This is especially important for the
root bone, which currently cannot be changed
from its default placement.

As for future work that we considered
outside the scope of this project, there are
various things that could be done to expand on
this project. One idea for future work would be
to have the mesh parts be automatically weight-
painted when they are added to a skeleton,
making for smoother deformations.

Additionally, this software is currently
unable to save its models for later access in the

program. One area for future work on this
program would be to allow it to save in either a
unique file type, or more preferably, one of the
more widely used file types for 3D characters
such as OBJ.

6. Distribution of Work

Héctor worked on the mesh refinement process,
which turned out to be much more involved than
we all expected. He also worked on mesh
association and setting up the project.

Etienne worked on implementing the
skeleton data structure and operations related to
it.

Between the two of us the project took about
72 man-hours, of which a majority was spent
trying to figure out mesh refinement.

7. References

[1] D. Eberly, “Triangulation by Ear
Clipping,” Geometric Tools, Redmond,
WA, Accessed on: April 22, 2019.
[Online] Available:
https://www.geometrictools.com/Docume

ntation/TriangulationByEarClipping.pdf

[2] F. R. Feito, C. J. Ogayar, R. J. Segura, M.
L. Rivero, “Fast and accurate evaluation
of regularized Boolean expressions on
triangulated solids,” Computer Aided
Design, vol. 45, no. 3, pp. 705-716. March
2013. Accessed on: April 2,2019.
[Online]. Available
https://linkinghub.elsevier.com/retrieve/pii
/S0010448512002746.

[3] S. Landier, “Boolean Operations on
Arbitrary Polyhedral Meshes,” Procedia
Engineering, vol. 124, pp. 200-212. 2015.
Accessed on: April 22, 2019. [Online].


https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0010448512002746
https://linkinghub.elsevier.com/retrieve/pii/S0010448512002746

Available
https://linkinghub.elsevier.com/retrieve/pii
/S1877705815032348.

T. Igarashi, S. Matsuoka, H. Tanaka,
“Teddy: A Sketching Interface for 3D
Freeform Design,” in SIGGRAPH ‘99,
Proceedings of the 26th annual
conference on Computer Graphics and
interactive techniques, Los Angeles, CA.
2002, pp. 409-416. Accessed on: January
17, 2019. [Online]. Available: doi:
10.1145/311535.311602

F.J. Seron, R. Rodriguez, E. Cerezo, A.
Pina, “Adding support for high-level
skeletal animation,” /EEE Transactions on
Visualization and Computer Graphics,
vol. 8, no. 4, October 2002. Accessed on:
April 1, 2019. [Online]. Available
http://ieeexplore.ieeec.org/document/10445
21/



https://linkinghub.elsevier.com/retrieve/pii/S1877705815032348
https://linkinghub.elsevier.com/retrieve/pii/S1877705815032348
https://doi.org/10.1145/311535.311602
http://ieeexplore.ieee.org/document/1044521/
http://ieeexplore.ieee.org/document/1044521/

