
Skeleton-Based Modeling of Characters
Héctor D. Rodríguez Figueroa and Etienne Morakotkarn

Abstract

Modeling a character in 3D has a different

process from drawing a character in 2D.

Whereas in 2D one starts with the structure of

the character before working on its form, the

process is reversed in 3D. In this paper we

present a software for skeleton-based modelling

of characters. This aims to be a new way of

creating 3D characters by starting with a

skeleton and adding meshes on each bone.

Through the process of mesh unification, these

meshes become one character capable of being

posed.

1. Introduction

In general, creation of 3D characters follows this

general workflow: first, the mesh is created,

which represents the character’s details; next,

the skeleton of the character is created, which

represents the inner details of how the character

moves and is structured. However, the creation

of 2D characters often follows a different

workflow: first, the core details and structure of

the character are hammered down in an initial

sketch; after that, the fine details of the character

are drawn on incrementally.

This project aims to experiment with the

creation of 3D characters using a workflow more

similar to that used to create 2D characters. In

this hypothetical workflow, first the user builds

a skeleton containing the core details of how the

character moves and is structured. Following

that, each bone of the skeleton is assigned an

individual mesh part. These mesh parts are

unified into one whole mesh that is then able to

be deformed according to its skeleton. This

process results ideally in a different kind of 3D

character from the ones made under a typical

workflow.

2. Related Work

The user-centered approach of our project takes

inspiration from the approach done by Teddy,

described in [4]. Igarashi et al. describe a tool

for 3D character creation based off of 2D pen

strokes. This shows another way 2D art

techniques have been brought into the third

dimension.

Much work has been done in the past on the

subject of mesh unification. Mesh unification

can be discussed as a subset of Constructive

Solid Geometry (CSG), a method of describing

surfaces as Boolean operations between two

other surfaces. In our case, we are looking at

unions, also known as an “or” operation. We

based our implementation of CSG with

triangular meshes on [2], which discusses CSG

on triangular meshes as a two-step operation:

mesh refinement, and triangle selection. Mesh

refinement is a process that modifies mesh

geometry so every triangle can be described as

strictly “exterior” or “interior.” Triangle

selection depends on the boolean operation in

question, and describes which triangles of the

refined mesh to keep. A union operation keeps

all exterior triangles and discards all interior

triangles. This process is described in Section

3.2.1.

[3] describes a similar process for applying

CSG operations on triangular meshes, in

particular, it describes mesh refinement in better

detail. It is not in the current implementation of

our project, however, its relevance to our project

is further described in Section 5.

Previous work has also been done on ways

to store skeleton data for efficient use in

animation and character creation. Seron et al.

propose an actor/skeleton tree hierarchy for use

especially in scene graphs. Their data structure

boasts real-time performance, and adaptability to

direct and inverse kinematics as well as motion

capture [5]. Our implementation of character

skeletons borrows heavily from their data

structure.

3. Implementation

Our implementation is written in the C♯

programming language and renders with

OpenGL using the OpenTK binding library. The

user interface was created using the Windows

Forms library from the .NET Framework.

3.1 Data Structures

3.1.1 Mesh Unification

Several data structures were necessary for the

mesh unification process. Firstly, it was

necessary to have a data structure for the overall

mesh data. Meshes are stored as a set of vertices

and a set of indexed triangles. Vertices have two

attributes: a 3-dimensional vector for its

position, and an integer for its associated bone

index. An indexed triangle has 3 integers

indicating the index of each of its vertices. This

makes it possible to render larger meshes

without repeating vertex positions several times

in memory.

When performing the mesh refinement step

(described in Section 3.2.1), some additional

supplemental data structures were necessary. To

accelerate the identification of triangle

intersections, axis-aligned bounding volumes

and octree structures are used. An axis-aligned

bounding volume is represented as two points in

3-space, a starting point and an ending point.

Each of the starting point’s components is less

than or equal to the ending point components.

This allows for cheap point-in-volume and ray-

intersects-volume determination. A suite of unit

tests exists for this structure, however, one case

was not accounted for and as a result it is not

currently completely functional (specifically,

intersecting volumes where neither the starting

point nor the ending point are inside any of the

two).

Octrees split an axis-aligned bounding

volume into eight equal-volume axis-aligned

sub-volumes. Leaf nodes contain the indices of

the triangles that intersect the leaf’s bounding

box. These are used to quickly discard any

triangle u that definitely does not intersect

triangle t. This is because if the bounding

volumes of u and t do not intersect, then u and t

do not intersect either. The functioning of this

was verified with verification of the triangle

classification algorithm, with progressively

larger and larger meshes.

The mesh refinement step also identifies

triangle-triangle intersection lines, which are

identified as collections of segment chains,

which describe an ordered sequence of

connected line segments (each represented as

two points in 3-space). These were tested with a

suite of unit tests.

Finally, the mesh refinement step culminates

in the triangulation of polygons, which are

represented as a linked list of polygon vertices.

Polygon vertices differ from regular vertices in

that they have no bone binding and that they are

classified as either reflex or non-reflex as

described in [1] and later on in Section 3.2.1.

3.1.2 Skeleton Structure

The data structure containing the skeleton is

based heavily off of the work of Seron et al., as

mentioned previously. However, it is worth

noting that this data structure was somewhat

simplified to remove elements we felt were

unneeded for this project. The basis of the data

structure is a tree with an Actor node at its root.

This node represents a character as a whole,

including their position in 3D space. It also

serves as the parent to the root bone of the

skeleton.

Meanwhile, each bone is represented as a

Node called a Skeleton Node. Each Skeleton

Node has one parent and potentially multiple

children Skeleton Nodes. The Skeleton Node

mainly keeps track of two matrices. First is the

offset matrix, which represents its default

position in comparison to its parent. Second is

the so-called skeleton matrix, which represents

how the skeleton has been additionally deformed

from its original position and rotation. The

skeleton Node additionally keeps track of which

Degrees of Freedom are enabled in order to

allow for restraining of certain rotations.

The Actor Node, as the parent to the

character tree as a whole, also serves a few other

roles not previously mentioned. For one, the

Actor Node keeps track of all of the Skeletons

under it, as well as their transformation

Matrices. Both of these are contained in separate

lists which are updated very simply through the

use of depth-first traversal. These lists minimize

the need for tree traversal which allows for more

convenient rendering among other things.

3.2 Algorithms

3.2.1 Mesh Refinement

Before meshes can be united, a mesh refinement

step described by [2] is undergone. This step

works to ensure that, given two meshes A and B,

every triangle in A can be described as either

“outside of B” or “inside of B,” and vice versa.

[2] describes a third classification, “on the

surface of B,” but this classification is, for our

intents and purposes, redundant.

Refinement of A to B is performed

independently on every triangle t in A. To refine

triangle t, we first check if t intersects any

triangle u in B. t intersects u if any edge in t

intersects u, and vice versa. [2] describes a

process for determining whether an edge

intersects a triangle. An edge e intersects t if: 1.)

both vertices of e are either on opposite sides of

the plane determined by t, and 2.) any of the

vertices of e is inside the angular zone of the

tetrahedron whose base is the triangle formed

from any edge of t and a vertex of e and whose

apex is the other vertex.

A vertex v is inside the angular zone of the

tetrahedron τ if v is on the same side of the four

triangles that compose τ. In the case that v is

coplanar to any of the triangles composing τ,

then v is also considered to be inside the angular

zone of τ.

If no triangle is found to intersect t, then t is

kept intact. Otherwise, we determine the line of

intersection that u makes along t and keep track

of it. This line of intersection can be determined

in a three-step process. First, we determine

which of the edges of u intersect the plane

determined from t. Next, we find the the

intersection points of the intersecting edges of u

with the plane determined from t. Finally, the

points are clipped using barycentric coordinates

along the ray determined from these two

intersection points such that they now lie either

within or on the edge of t.

Once the intersecting segments are

determined, we join segments which share

endpoints into the segment chain structure

described in Section 3.1.1 and create polygons

out of these chains and the original triangle

geometry. To accomplish this, we walk along

the edges of t starting from point A, followed by

point B, and then point C, before returning to

point A. If we come across an endpoint of any

segment chain σ that intersects our current path,

then we logically split the execution into two

“processes.” The parent “process” will advance

to the other endpoint of σ but otherwise continue

its planned route, while the child “process” will

start from the found endpoint of σ, continue the

planned route, but stop at the other endpoint of

σ. This creates a set of polygons which have the

same winding order as the original triangle.

The final step of the triangle refinement

process is triangulation. Triangulation is

accomplished using the ear-clipping method

described in [1]. This process starts by

identification of the ear vertices in the polygon.

A vertex v is an ear vertex if it is not a reflex

vertex (i.e. its angle is less than 180°) and if

there are no other vertices within the triangle

formed from v and its two adjacent vertices.

Then, we can triangulate the polygon by

iteratively creating a triangle from every ear

vertex. As ear vertices get removed, non-ear

vertices may become ear vertices, so this

identification step must be performed again.

This results in a refined triangle where every

sub-triangle is either outside or inside B. A

simple example of such a result is shown in

Figure 1.

3.2.2 Mesh Unification

Once the mesh has been refined, mesh

unification is a relatively simple step. First, we

let A′ = refine(A, B) and B′ = refine(B, A). Then,

for every triangle t in A′, if t is outside of B′,

then we keep t. Otherwise, we discard t. The

same process is then performed for every

triangle u in B′. To determine whether t is in B′,

we perform a point-in-solid test per [2]. This test

is based on the Jordan Curve Theorem, which

states that a closed curve divides its space into

two: an interior space and an exterior space. This

theorem also applies in 3-space with a closed

surface. Thus, we cast a ray from the centroid of

t along its normal and count the number of

intersections we have with B′ along the way. If

the number of intersections is odd, then t is

inside B′. Otherwise, t is outside of B′. The

generated mesh will then be composed of the

kept triangles and their vertices.

3.2.3 Vertex Association

In the workflow described in Section 4, meshes

are assigned to bones. This indicates which

geometry features should be moved along with

which bones. When a mesh is associated with a

bone, the bone index for each of the vertices in

the mesh is set to the index of the bone it is

being associated to. When meshes are united,

this bone association is preserved.

New vertices may be created during the

mesh refinement process. When this happens,

several schemes could be used to determine the

bone association of the newly-created vertex.

The crudely-implemented scheme in the

codebase as of this writing inspects the vertices

of all triangles that intersect the triangle

currently undergoing refinement and selects the

most frequent vertex index found. Some other

schemes that could have been followed are

described in Section 6.

Figure 1 – Result of mesh refinement. The resulting

triangles are outlined in red for visibility.

3.2.4 Mesh Deformation

When deforming the mesh in order to reflect the

skeleton’s current pose, vertices take different

model transformations based on their associated

bone index. The transformation undergone is as

follows. First, we transform the vertex v to bone-

space. Let 𝑂𝑖 and 𝑆𝑖 be the offset and skeleton

matrices, respectively, for bone i. Additionally,

let 𝑂𝐶𝑖
 be the cumulative offset transform matrix

for i, and let j be the parent of i. Then, 𝑂𝐶𝑖
 can

be calculated as the multiplication of the bone’s

offset matrix by its parent’s cumulative offset

transform matrix:

𝑂𝐶𝑖
= 𝑂𝑖 × 𝑂𝐶𝑗

The transformation of 𝑣⃗ from model-space

to bone-space is the inverse of the cumulative

offset transform matrix of its associated bone.

Thus, 𝑣⃗ transformed to bone-space 𝑣𝐵⃗⃗ ⃗⃗⃗ is:

𝑣𝐵⃗⃗ ⃗⃗⃗ = 𝑂𝐶𝑖

−1 𝑣⃗

Once v is transformed into bone-space, we

transform it to its final position 𝑣′⃗⃗⃗ ⃗by

transforming it by the cumulative skeleton

matrix 𝑆𝐶𝑖
:

𝑣′⃗⃗⃗ ⃗ = 𝑆𝐶𝑖
 𝑣𝐵⃗⃗ ⃗⃗ ⃗⃗

Where the cumulative skeleton matrix 𝑆𝐶𝑖
 is

the multiplication of the bone’s parent’s

cumulative skeleton matrix 𝑆𝐶𝑗
 by the bone’s

offset and skeleton matrices:

𝑆𝐶𝑖
= 𝑆𝐶𝑗

𝑂𝑖𝑆𝑖

As there are relatively few matrices and

these matrices are used several times, a

transform matrix 𝑇𝑖 for each bone is calculated

on the CPU before rendering (as GPUs perform

poorly when doing recursive workloads). The

bone transform matrix is the total transform

matrix that transforms 𝑣⃗ to 𝑣′⃗⃗⃗ ⃗:

𝑇𝑖 = 𝑆𝐶𝑖
𝑂𝐶𝑖

−1

4. Results and Workflow

Skeleton creation is functional, as is mesh

posing. However, mesh unification is currently

more broken than not owing to the complexity

of the process. Best-case scenario, random

triangles in the mesh will be erroneously

discarded. Worst-case scenario, the process

either hangs indefinitely or crashes. Debugging

work in the limited timeframe seems to point at

bugs in the octree implementation leading to

false positives and negatives. Figure 2 shows a

mesh without intersections being posed in the

pose editor. The individual body part vertices

move as expected with the bones. Figure 3

shows the same skeleton with different body part

meshes being posed. As these meshes now

Figure 2 – Posing a snake-like skeleton with non-

intersecting meshes.

Figure 3 – Posing a snake-like skeleton with

intersecting meshes

intersect with each other, the broken state of the

mesh refiner is now visible.

Although the mesh unification stage is still

incomplete, the end-user workflow of the tool is

in a functional state. The program starts in the

Bone Editor window, shown in Figure 4. On the

left side of this window is a 3D view with a set

of axes representing the X,Y, and Z axes, as well

as a single pre-placed bone (represented in the

unselected state as a line with blue squares on

each end). In this 3D view, as with other

windows in this software, the user can rotate the

camera by clicking and dragging the mouse.

Additionally, the user can zoom the camera in

and out by holding Shift while dragging the

mouse, and can translate the camera by holding

Ctrl.

On the right side of the Bone Editor window

is a panel with the hierarchy of the Skeleton

Nodes, under which are controls used for

placing new bones. The hierarchy can be

explored using the mouse; selecting a bone will

cause it to be highlighted in orange. Selecting a

bone in the hierarchy, and then clicking the Add

Bone button in the bottom right, will create a

new bone according to the control values, and

add it as a child of the currently selected bone.

The user can also press the Delete Bone button

to delete any bone other than the root bone,

which sets all of its children to be children of the

deleted bone’s parent, while keeping the

children in the same global position.

On the top left of this window is a button

labeled “Assign Mesh”. Clicking this window

while a bone is selected will bring up the Mesh

Editor window, shown in Figure 5, where the

user can position a mesh relative to the bone.

Closing this form will assign the mesh to the

bone in the Bone Editor as well. Various

controls are possible within this form; selecting

the folder will allow the user to select an OBJ

model from the computer to assign to the bone.

On the other hand, selecting the cube icon in the

controls toolbar allows the user to move the

mesh in relation to the bone (by holding down

Shift), and rotate the mesh around the bone (by

holding down Alt).

Going back to the Bone Editor window, the

last button on the toolbar opens the Poser. The

poser is similar to the Bone Editor, but instead

of allowing the user to add or delete bones, it

allows the user to rotate the bones according to

the constraints the user defined in the Bone

Editor by using the sliders in the bottom right. It

is also at this point that the program attempts the

mesh unification process, as described in the

previous section.

Figure 4 – Bone editor window.

Figure 5 – Editing a bone’s associated mesh.

5. Future Work

While the core functionality of this project has

been, for the most part, finished, there are quite

a few various areas to improve upon. Most

notably is the area of mesh unification, which is

still rather buggy and prone to mishaps. Late in

the project’s implementation period, an

additional source on CSG application on

triangulated meshes was found which has a more

thorough explanation on the subdivision of

intersecting triangles, specifically, a constrained

Delaunay triangulation can be performed on the

triangle and its intersecting edges [3]. This has

the advantage of handling closed intra-triangle

intersection lines, which do not intersect with

any of the triangle’s edges, and, as a result, are

not handled by our triangle refinement method.

Thus, rewriting the mesh refinement process to

use this alternative mesh refinement method can

be included as work that could be done.

Additionally, as can probably be clearly

seen in the images, the user interface could

definitely use some work; ideally the need to

type in values could be done away with in favor

of manipulating the bones directly through use

of mouse or other input devices. The windows

could also probably be combined in some way to

make them more convenient, and it could be

made easier to modify skeleton offsets after they

are placed. This is especially important for the

root bone, which currently cannot be changed

from its default placement.

As for future work that we considered

outside the scope of this project, there are

various things that could be done to expand on

this project. One idea for future work would be

to have the mesh parts be automatically weight-

painted when they are added to a skeleton,

making for smoother deformations.

Additionally, this software is currently

unable to save its models for later access in the

program. One area for future work on this

program would be to allow it to save in either a

unique file type, or more preferably, one of the

more widely used file types for 3D characters

such as OBJ.

6. Distribution of Work

Héctor worked on the mesh refinement process,

which turned out to be much more involved than

we all expected. He also worked on mesh

association and setting up the project.

Etienne worked on implementing the

skeleton data structure and operations related to

it.

Between the two of us the project took about

72 man-hours, of which a majority was spent

trying to figure out mesh refinement.

7. References

[1] D. Eberly, “Triangulation by Ear

Clipping,” Geometric Tools, Redmond,

WA, Accessed on: April 22, 2019.

[Online] Available:

https://www.geometrictools.com/Docume

ntation/TriangulationByEarClipping.pdf

[2] F. R. Feito, C. J. Ogayar, R. J. Segura, M.

L. Rivero, “Fast and accurate evaluation

of regularized Boolean expressions on

triangulated solids,” Computer Aided

Design, vol. 45, no. 3, pp. 705-716. March

2013. Accessed on: April 2, 2019.

[Online]. Available

https://linkinghub.elsevier.com/retrieve/pii

/S0010448512002746.

[3] S. Landier, “Boolean Operations on

Arbitrary Polyhedral Meshes,” Procedia

Engineering, vol. 124, pp. 200-212. 2015.

Accessed on: April 22, 2019. [Online].

https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0010448512002746
https://linkinghub.elsevier.com/retrieve/pii/S0010448512002746

Available

https://linkinghub.elsevier.com/retrieve/pii

/S1877705815032348.

[4] T. Igarashi, S. Matsuoka, H. Tanaka,

“Teddy: A Sketching Interface for 3D

Freeform Design,” in SIGGRAPH ‘99,

Proceedings of the 26th annual

conference on Computer Graphics and

interactive techniques, Los Angeles, CA.

2002, pp. 409-416. Accessed on: January

17, 2019. [Online]. Available: doi:

10.1145/311535.311602

[5] F. J. Seron, R. Rodriguez, E. Cerezo, A.

Pina, “Adding support for high-level

skeletal animation,” IEEE Transactions on

Visualization and Computer Graphics,

vol. 8, no. 4, October 2002. Accessed on:

April 1, 2019. [Online]. Available

http://ieeexplore.ieee.org/document/10445

21/

https://linkinghub.elsevier.com/retrieve/pii/S1877705815032348
https://linkinghub.elsevier.com/retrieve/pii/S1877705815032348
https://doi.org/10.1145/311535.311602
http://ieeexplore.ieee.org/document/1044521/
http://ieeexplore.ieee.org/document/1044521/

