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Abstract 

Modeling a character in 3D has a different 

process from drawing a character in 2D. 

Whereas in 2D one starts with the structure of 

the character before working on its form, the 

process is reversed in 3D. In this paper we 

present a software for skeleton-based modelling 

of characters. This aims to be a new way of 

creating 3D characters by starting with a 

skeleton and adding meshes on each bone. 

Through the process of mesh unification, these 

meshes become one character capable of being 

posed. 

1. Introduction 

In general, creation of 3D characters follows this 

general workflow: first, the mesh is created, 

which represents the character’s details; next, 

the skeleton of the character is created, which 

represents the inner details of how the character 

moves and is structured. However, the creation 

of 2D characters often follows a different 

workflow: first, the core details and structure of 

the character are hammered down in an initial 

sketch; after that, the fine details of the character 

are drawn on incrementally.  

This project aims to experiment with the 

creation of 3D characters using a workflow more 

similar to that used to create 2D characters. In 

this hypothetical workflow, first the user builds 

a skeleton containing the core details of how the 

character moves and is structured. Following 

that, each bone of the skeleton is assigned an 

individual mesh part. These mesh parts are 

unified into one whole mesh that is then able to 

be deformed according to its skeleton. This 

process results ideally in a different kind of 3D 

character from the ones made under a typical 

workflow.  

2. Related Work 

The user-centered approach of our project takes 

inspiration from the approach done by Teddy, 

described in [4]. Igarashi et al. describe a tool 

for 3D character creation based off of 2D pen 

strokes. This shows another way 2D art 

techniques have been brought into the third 

dimension. 

Much work has been done in the past on the 

subject of mesh unification. Mesh unification 

can be discussed as a subset of Constructive 

Solid Geometry (CSG), a method of describing 

surfaces as Boolean operations between two 

other surfaces. In our case, we are looking at 

unions, also known as an “or” operation. We 

based our implementation of CSG with 

triangular meshes on [2], which discusses CSG 

on triangular meshes as a two-step operation: 

mesh refinement, and triangle selection. Mesh 

refinement is a process that modifies mesh 

geometry so every triangle can be described as 

strictly “exterior” or “interior.” Triangle 

selection depends on the boolean operation in 

question, and describes which triangles of the 

refined mesh to keep. A union operation keeps 

all exterior triangles and discards all interior 

triangles. This process is described in Section 

3.2.1. 

[3] describes a similar process for applying 

CSG operations on triangular meshes, in 

particular, it describes mesh refinement in better 

detail. It is not in the current implementation of 



our project, however, its relevance to our project 

is further described in Section 5. 

Previous work has also been done on ways 

to store skeleton data for efficient use in 

animation and character creation. Seron et al. 

propose an actor/skeleton tree hierarchy for use 

especially in scene graphs. Their data structure 

boasts real-time performance, and adaptability to 

direct and inverse kinematics as well as motion 

capture [5]. Our implementation of character 

skeletons borrows heavily from their data 

structure.  

3. Implementation 

Our implementation is written in the C♯ 

programming language and renders with 

OpenGL using the OpenTK binding library. The 

user interface was created using the Windows 

Forms library from the .NET Framework. 

3.1 Data Structures 

3.1.1 Mesh Unification 

Several data structures were necessary for the 

mesh unification process. Firstly, it was 

necessary to have a data structure for the overall 

mesh data. Meshes are stored as a set of vertices 

and a set of indexed triangles. Vertices have two 

attributes: a 3-dimensional vector for its 

position, and an integer for its associated bone 

index. An indexed triangle has 3 integers 

indicating the index of each of its vertices. This 

makes it possible to render larger meshes 

without repeating vertex positions several times 

in memory. 

When performing the mesh refinement step 

(described in Section 3.2.1), some additional 

supplemental data structures were necessary. To 

accelerate the identification of triangle 

intersections, axis-aligned bounding volumes 

and octree structures are used. An axis-aligned 

bounding volume is represented as two points in 

3-space, a starting point and an ending point. 

Each of the starting point’s components is less 

than or equal to the ending point components. 

This allows for cheap point-in-volume and ray-

intersects-volume determination. A suite of unit 

tests exists for this structure, however, one case 

was not accounted for and as a result it is not 

currently completely functional (specifically, 

intersecting volumes where neither the starting 

point nor the ending point are inside any of the 

two). 

Octrees split an axis-aligned bounding 

volume into eight equal-volume axis-aligned 

sub-volumes. Leaf nodes contain the indices of 

the triangles that intersect the leaf’s bounding 

box. These are used to quickly discard any 

triangle u that definitely does not intersect 

triangle t. This is because if the bounding 

volumes of u and t do not intersect, then u and t 

do not intersect either. The functioning of this 

was verified with verification of the triangle 

classification algorithm, with progressively 

larger and larger meshes. 

The mesh refinement step also identifies 

triangle-triangle intersection lines, which are 

identified as collections of segment chains, 

which describe an ordered sequence of 

connected line segments (each represented as 

two points in 3-space). These were tested with a 

suite of unit tests. 

Finally, the mesh refinement step culminates 

in the triangulation of polygons, which are 

represented as a linked list of polygon vertices. 

Polygon vertices differ from regular vertices in 

that they have no bone binding and that they are 

classified as either reflex or non-reflex as 

described in [1] and later on in Section 3.2.1.  



3.1.2 Skeleton Structure 

The data structure containing the skeleton is 

based heavily off of the work of Seron et al., as 

mentioned previously. However, it is worth 

noting that this data structure was somewhat 

simplified to remove elements we felt were 

unneeded for this project. The basis of the data 

structure is a tree with an Actor node at its root. 

This node represents a character as a whole, 

including their position in 3D space. It also 

serves as the parent to the root bone of the 

skeleton.  

Meanwhile, each bone is represented as a 

Node called a Skeleton Node. Each Skeleton 

Node has one parent and potentially multiple 

children Skeleton Nodes. The Skeleton Node 

mainly keeps track of two matrices. First is the 

offset matrix, which represents its default 

position in comparison to its parent. Second is 

the so-called skeleton matrix, which represents 

how the skeleton has been additionally deformed 

from its original position and rotation. The 

skeleton Node additionally keeps track of which 

Degrees of Freedom are enabled in order to 

allow for restraining of certain rotations.  

The Actor Node, as the parent to the 

character tree as a whole, also serves a few other 

roles not previously mentioned. For one, the 

Actor Node keeps track of all of the Skeletons 

under it, as well as their transformation 

Matrices. Both of these are contained in separate 

lists which are updated very simply through the 

use of depth-first traversal. These lists minimize 

the need for tree traversal which allows for more 

convenient rendering among other things.  

3.2 Algorithms 

3.2.1 Mesh Refinement 

Before meshes can be united, a mesh refinement 

step described by [2] is undergone. This step 

works to ensure that, given two meshes A and B, 

every triangle in A can be described as either 

“outside of B” or “inside of B,” and vice versa. 

[2] describes a third classification, “on the 

surface of B,” but this classification is, for our 

intents and purposes, redundant. 

Refinement of A to B is performed 

independently on every triangle t in A. To refine 

triangle t, we first check if t intersects any 

triangle u in B. t intersects u if any edge in t 

intersects u, and vice versa. [2] describes a 

process for determining whether an edge 

intersects a triangle. An edge e intersects t if: 1.) 

both vertices of e are either on opposite sides of 

the plane determined by t, and 2.) any of the 

vertices of e is inside the angular zone of the 

tetrahedron whose base is the triangle formed 

from any edge of t and a vertex of e and whose 

apex is the other vertex. 

A vertex v is inside the angular zone of the 

tetrahedron τ if v is on the same side of the four 

triangles that compose τ. In the case that v is 

coplanar to any of the triangles composing τ, 

then v is also considered to be inside the angular 

zone of τ. 

If no triangle is found to intersect t, then t is 

kept intact. Otherwise, we determine the line of 

intersection that u makes along t and keep track 

of it. This line of intersection can be determined 

in a three-step process. First, we determine 

which of the edges of u intersect the plane 

determined from t. Next, we find the the 

intersection points of the intersecting edges of u 

with the plane determined from t. Finally, the 

points are clipped using barycentric coordinates 

along the ray determined from these two 

intersection points such that they now lie either 

within or on the edge of t. 

Once the intersecting segments are 

determined, we join segments which share 

endpoints into the segment chain structure 



described in Section 3.1.1 and create polygons 

out of these chains and the original triangle 

geometry. To accomplish this, we walk along 

the edges of t starting from point A, followed by 

point B, and then point C, before returning to 

point A. If we come across an endpoint of any 

segment chain σ that intersects our current path, 

then we logically split the execution into two 

“processes.” The parent “process” will advance 

to the other endpoint of σ but otherwise continue 

its planned route, while the child “process” will 

start from the found endpoint of σ, continue the 

planned route, but stop at the other endpoint of 

σ. This creates a set of polygons which have the 

same winding order as the original triangle. 

The final step of the triangle refinement 

process is triangulation. Triangulation is 

accomplished using the ear-clipping method 

described in [1]. This process starts by 

identification of the ear vertices in the polygon. 

A vertex v is an ear vertex if it is not a reflex 

vertex (i.e. its angle is less than 180°) and if 

there are no other vertices within the triangle 

formed from v and its two adjacent vertices. 

Then, we can triangulate the polygon by 

iteratively creating a triangle from every ear 

vertex. As ear vertices get removed, non-ear 

vertices may become ear vertices, so this 

identification step must be performed again. 

This results in a refined triangle where every 

sub-triangle is either outside or inside B. A 

simple example of such a result is shown in 

Figure 1. 

3.2.2 Mesh Unification 

Once the mesh has been refined, mesh 

unification is a relatively simple step. First, we 

let A′ = refine(A, B) and B′ = refine(B, A). Then, 

for every triangle t in A′, if t is outside of B′, 

then we keep t. Otherwise, we discard t. The 

same process is then performed for every 

triangle u in B′. To determine whether t is in B′, 

we perform a point-in-solid test per [2]. This test 

is based on the Jordan Curve Theorem, which 

states that a closed curve divides its space into 

two: an interior space and an exterior space. This 

theorem also applies in 3-space with a closed 

surface. Thus, we cast a ray from the centroid of 

t along its normal and count the number of 

intersections we have with B′ along the way. If 

the number of intersections is odd, then t is 

inside B′. Otherwise, t is outside of B′. The 

generated mesh will then be composed of the 

kept triangles and their vertices. 

3.2.3 Vertex Association 

In the workflow described in Section 4, meshes 

are assigned to bones. This indicates which 

geometry features should be moved along with 

which bones. When a mesh is associated with a 

bone, the bone index for each of the vertices in 

the mesh is set to the index of the bone it is 

being associated to. When meshes are united, 

this bone association is preserved. 

New vertices may be created during the 

mesh refinement process. When this happens, 

several schemes could be used to determine the 

bone association of the newly-created vertex. 

The crudely-implemented scheme in the 

codebase as of this writing inspects the vertices 

of all triangles that intersect the triangle 

currently undergoing refinement and selects the 

most frequent vertex index found. Some other 

schemes that could have been followed are 

described in Section 6. 

Figure 1 – Result of mesh refinement. The resulting 

triangles are outlined in red for visibility. 

 



3.2.4 Mesh Deformation 

When deforming the mesh in order to reflect the 

skeleton’s current pose, vertices take different 

model transformations based on their associated 

bone index. The transformation undergone is as 

follows. First, we transform the vertex v to bone-

space. Let 𝑂𝑖 and 𝑆𝑖 be the offset and skeleton 

matrices, respectively, for bone i. Additionally, 

let 𝑂𝐶𝑖
 be the cumulative offset transform matrix 

for i, and let j be the parent of i. Then, 𝑂𝐶𝑖
 can 

be calculated as the multiplication of the bone’s 

offset matrix by its parent’s cumulative offset 

transform matrix: 

𝑂𝐶𝑖
= 𝑂𝑖 × 𝑂𝐶𝑗

 

The transformation of 𝑣⃗ from model-space 

to bone-space is the inverse of the cumulative 

offset transform matrix of its associated bone. 

Thus, 𝑣⃗ transformed to bone-space 𝑣𝐵⃗⃗ ⃗⃗⃗ is: 

𝑣𝐵⃗⃗ ⃗⃗⃗ = 𝑂𝐶𝑖

−1 𝑣⃗ 

Once v is transformed into bone-space, we 

transform it to its final position 𝑣′⃗⃗⃗ ⃗by 

transforming it by the cumulative skeleton 

matrix 𝑆𝐶𝑖
: 

𝑣′⃗⃗⃗ ⃗ = 𝑆𝐶𝑖
 𝑣𝐵⃗⃗ ⃗⃗ ⃗⃗  

Where the cumulative skeleton matrix 𝑆𝐶𝑖
 is 

the multiplication of the bone’s parent’s 

cumulative skeleton matrix 𝑆𝐶𝑗
 by the bone’s 

offset and skeleton matrices: 

𝑆𝐶𝑖
= 𝑆𝐶𝑗

𝑂𝑖𝑆𝑖 

As there are relatively few matrices and 

these matrices are used several times, a 

transform matrix 𝑇𝑖 for each bone is calculated 

on the CPU before rendering (as GPUs perform 

poorly when doing recursive workloads). The 

bone transform matrix is the total transform 

matrix that transforms 𝑣⃗ to 𝑣′⃗⃗⃗ ⃗: 

𝑇𝑖 = 𝑆𝐶𝑖
𝑂𝐶𝑖

−1 

4. Results and Workflow 

Skeleton creation is functional, as is mesh 

posing. However, mesh unification is currently 

more broken than not owing to the complexity 

of the process. Best-case scenario, random 

triangles in the mesh will be erroneously 

discarded. Worst-case scenario, the process 

either hangs indefinitely or crashes. Debugging 

work in the limited timeframe seems to point at 

bugs in the octree implementation leading to 

false positives and negatives. Figure 2 shows a 

mesh without intersections being posed in the 

pose editor. The individual body part vertices 

move as expected with the bones. Figure 3 

shows the same skeleton with different body part 

meshes being posed. As these meshes now 

Figure 2 – Posing a snake-like skeleton with non-

intersecting meshes. 

Figure 3 – Posing a snake-like skeleton with 

intersecting meshes 

 



intersect with each other, the broken state of the 

mesh refiner is now visible. 

Although the mesh unification stage is still 

incomplete, the end-user workflow of the tool is 

in a functional state. The program starts in the 

Bone Editor window, shown in Figure 4. On the 

left side of this window is a 3D view with a set 

of axes representing the X,Y, and Z axes, as well 

as a single pre-placed bone (represented in the 

unselected state as a line with blue squares on 

each end). In this 3D view, as with other 

windows in this software, the user can rotate the 

camera by clicking and dragging the mouse. 

Additionally, the user can zoom the camera in 

and out by holding Shift while dragging the 

mouse, and can translate the camera by holding 

Ctrl.  

On the right side of the Bone Editor window 

is a panel with the hierarchy of the Skeleton 

Nodes, under which are controls used for 

placing new bones. The hierarchy can be 

explored using the mouse; selecting a bone will 

cause it to be highlighted in orange. Selecting a 

bone in the hierarchy, and then clicking the Add 

Bone button in the bottom right, will create a 

new bone according to the control values, and 

add it as a child of the currently selected bone. 

The user can also press the Delete Bone button 

to delete any bone other than the root bone, 

which sets all of its children to be children of the 

deleted bone’s parent, while keeping the 

children in the same global position. 

On the top left of this window is a button 

labeled “Assign Mesh”. Clicking this window 

while a bone is selected will bring up the Mesh 

Editor window, shown in Figure 5, where the 

user can position a mesh relative to the bone. 

Closing this form will assign the mesh to the 

bone in the Bone Editor as well. Various 

controls are possible within this form; selecting 

the folder will allow the user to select an OBJ 

model from the computer to assign to the bone. 

On the other hand, selecting the cube icon in the 

controls toolbar allows the user to move the 

mesh in relation to the bone (by holding down 

Shift), and rotate the mesh around the bone (by 

holding down Alt). 

Going back to the Bone Editor window, the 

last button on the toolbar opens the Poser. The 

poser is similar to the Bone Editor, but instead 

of allowing the user to add or delete bones, it 

allows the user to rotate the bones according to 

the constraints the user defined in the Bone 

Editor by using the sliders in the bottom right. It 

is also at this point that the program attempts the 

mesh unification process, as described in the 

previous section. 

Figure 4 – Bone editor window. 

Figure 5 – Editing a bone’s associated mesh. 



5. Future Work 

While the core functionality of this project has 

been, for the most part, finished, there are quite 

a few various areas to improve upon. Most 

notably is the area of mesh unification, which is 

still rather buggy and prone to mishaps. Late in 

the project’s implementation period, an 

additional source on CSG application on 

triangulated meshes was found which has a more 

thorough explanation on the subdivision of 

intersecting triangles, specifically, a constrained 

Delaunay triangulation can be performed on the 

triangle and its intersecting edges [3]. This has 

the advantage of handling closed intra-triangle 

intersection lines, which do not intersect with 

any of the triangle’s edges, and, as a result, are 

not handled by our triangle refinement method. 

Thus, rewriting the mesh refinement process to 

use this alternative mesh refinement method can 

be included as work that could be done. 

Additionally, as can probably be clearly 

seen in the images, the user interface could 

definitely use some work; ideally the need to 

type in values could be done away with in favor 

of manipulating the bones directly through use 

of mouse or other input devices. The windows 

could also probably be combined in some way to 

make them more convenient, and it could be 

made easier to modify skeleton offsets after they 

are placed. This is especially important for the 

root bone, which currently cannot be changed 

from its default placement.  

As for future work that we considered 

outside the scope of this project, there are 

various things that could be done to expand on 

this project. One idea for future work would be 

to have the mesh parts be automatically weight-

painted when they are added to a skeleton, 

making for smoother deformations.  

Additionally, this software is currently 

unable to save its models for later access in the 

program. One area for future work on this 

program would be to allow it to save in either a 

unique file type, or more preferably, one of the 

more widely used file types for 3D characters 

such as OBJ. 

6. Distribution of Work 

Héctor worked on the mesh refinement process, 

which turned out to be much more involved than 

we all expected. He also worked on mesh 

association and setting up the project. 

Etienne worked on implementing the 

skeleton data structure and operations related to 

it.  

Between the two of us the project took about 

72 man-hours, of which a majority was spent 

trying to figure out mesh refinement. 
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