
VDB Deformer: VDB Free-form Deformation in SideFX Houdini

Figure 1: Left is input flame simulation, right is resulting deformation

John Noonan

1 Abstract

 VDB Deformer is a tool built into SideFX Houdini as a Surface Operator (SOP). This tool

allows for free-form deformation (FFD) of OpenVDB primitives through the use of a lattice. By

manipulating the shape of a volume the user is allowed greater control of the work and

facilitates faster iteration.

2 Motivation

Volumes are used frequently in computer graphics, particularly for animated elements in

smoke, fluid, and fracture effects. These effects are often created through complex simulations

which may require lengthy compute times. For uses such as feature animation these

simulations may be required to hit a certain visual mark as defined by directors which can be

difficult to create through adjusting simulation parameters alone. Performing iterative

simulations may also be too costly and still does not guarantee the desired effect. As such it is

often necessary to edit an existing simulation or volume representation rather than attempt to

create a new one. Art-directed volume deformation offers a way to work around these

limitations. Performing user controlled edits on simulations offers additional control. Example

uses may be: editing a static volume, creating low cost collision by having the simulated

volumes closely avoid other objects, sculpting a very specific silhouette, or allowing for a

physically correct simulation to selectively perform an unrealistic action.

3 Related Work

 Free-form deformation was made ubiquitous in computer graphics by Sederberg and

Parry which introduced a method for “sculpturing solid models” [Sederberg 1986]. FFD is a

versatile tool which allows for indirect modification of geometry by superimposing a caged

lattice around the model which may be edited. The FFD is defined in terms of the trivariate

Bernstein polynomial. The lattice serves as a local coordinate system which may be

manipulated by the user. Each vertex of the model may be mapped to the modified grid which

relocates the point in global space. For the most part this form of model deformation is used on

discrete polygonal meshes or implicit surfaces however extensions to volumetric data exist.

Ecker et. al used a volumetric deformation technique which involved sampling density values to

points centered on each voxel, deforming the resulting point cloud using standard geometric

deformation, and then transferring the values from the points into the new volume [Ecker 2016].

Wrenninge and Rice created rasterized data and a custom lattice primitive which makes it

possible to deform existing volumes with intuitive control used in the 3D software SideFX

Houdini [Wrenninge 2016].

4 Technique

4.1 Utilized Technologies

VDB Deformer leverages several existing frameworks. The tool is built in as SOP node in

SideFX Houdini by using the Houdini Development Kit, a C++ API that allows for plugin

development. Additionally the program uses OpenVDB, an open source hierarchical data

structure for the efficient representation of sparse volumetric data on a 3D grid [Museth 2013].

The suite can represent both density fields and signed distance fields, both of which are

capable of being used with the deformer.

4.2 Data Structures

 This project benefits from leveraging powerful existing APIs, but within these tools two

data structures were created. The class SOP_Volume_Deform is the implementation of the node

used in Houdini. It defines the parameters and required inputs as well as performs all

calculations in the software. This process is called “cooking” and is launched by the function

“cookMySop”. SOP_Volume_Deform has no local variables as the parameters it edits must be

recalculated each time a parameter in the node tree is edited. Thus inputs are queried inside

cookMySop and used to edit the global detail, an inherited value that Houdini will use to output

the result of our node.

 The other data structure created is “MyLattice”, an implementation of that described in

Sederberg. This class stores the input rest and deformed lattices as geometric details. From

these it calculates the local axis S, T, and U and the origin p0. Using linear algebra given any

world position it can calculate the local coordinate position (s,t,u) such that if the point is inside

the rest lattice each component will be between 0 and 1. All deformation work is handled by this

class.

4.3 Data Gaps

 As stated earlier, FFD is primarily concerned with the deformation of polygonal data. A

distinction between polygonal and volumetric data is that polygonal data is defined by

connected vertices while volumetric data is (for the most part) comprised of discrete grids. If a

vertex of a square is dragged outward, the quadrilateral is still defined continuously by the set of

vertices and edges. If a voxel is moved in a

3D grid, there is no direct connection that

guarantees the grid will still be continuous

(see figure 2 for an example). As such a

major concern with volumetric deformation

is maintaining the initial coherence of the data set without introducing gaps. This can occur

when the lattice represents a stretched shape where new cells will be activated and empty cells

may exist between the new deformed positions. Unfortunately, merely rasterizing the voxels as

points and then performing deformation will lead to discontinuities and require a high resolution

grid in order to not show these errors.

4.4 Algorithm

 A goal of this project was to try and deform the volumes without direct rasterization to a

point cloud. As such the basis of the algorithm is for every input voxel calculate the deformed

position in world space and then write the value of the voxel into a new volume at the deformed

position. However, this forward deformation will result in gaps. Therefore, the proper algorithm

would be for each cell in the destination grid that is inside the deformed lattice, determine the

local coordinate of the voxel and then sample the original grid at that world space position

corresponding to the same local coordinate and interpolate any value that would exist at a

fractional grid index. This is of course the backwards process the typical FFD. The main

Figure 2: Example of a volume with gaps on left and the
polygonalization of that volume

challenge with this approach is that for any deformed world space position no local coordinate

value is known. No previous work has been found exploring this topic.

 A “reverse deformation” seems to be the solution, however this is not very feasible as it

would require a complex computation of the inverse of Bezier interpolation and is unlikely to

have one result. An attempted solution was to interpolate the local coordinates by performing

trilinear interpolation of the deformed point inside the subdivision cell of the deformed lattice.

This form of reverse deformation is currently still being worked on. Therefore the only

deformation available at the moment is the forward FFD which regrettably produces grid holes.

4.5 Technical Challenges

 Throughout the development of this project there were numerous challenges. One

significant setback was difficulty compiling with the Houdini HDK and OpenVDB. Proper file

inclusions were not always obvious and throughout there was difficulty building with the

compiled libraries. An example of this is how the OpenVDB API uses the file openvdb.lib while

the HDK uses openvdb_sesi.lib located elsewhere. Because of these difficulties the project is

currently compiled using the Houdini command line tool “hcustom” with explicit file inclusion.

Unfortunately, building with cmake is currently not working. Once the project could be compiled,

the next hurdle to overcome became the difficult task of learning the HDK. It is quite complex

and at times very unintuitive. One problem was trying to edit the input VDB as it requires

multiple dynamic casts to convert to the correct data type. Additionally as Houdini is a

proprietary program, a lot of the inner workings are hidden and the auto created documentation

is not always helpful, such as there being no explained distinction between the functions xsize()

and sizeX(). Another challenge was iterating through voxels. There was some confusion as to

the coordinate space of the VDB grid as each voxel has “index space” coordinates that defines

the three dimensional grid and a “world space” coordinate. It can be confusing which way to

access a voxel is the correct way to be used in certain situations, which led to a lot of trial and

error.

5 Results

5.1 Usage

Users create a VDB representation

natively in Houdini and a uniform parallelepiped

to represent the lattice. While any axis aligned

uniformly subdivided box will work it is

recommended to use a bounding box of the

volume for results to be the most intuitive. This bounding box should be of the largest size

required to contain the volume over the entire animated timeline. A deformed copy is created of

the rest lattice which may be edited in real time by dragging or programmatically editing the

position of the cage control points. The VDB, rest, and deform lattice nodes are connected to

the deformer node and the xyz divisions of the lattice are specified as parameters (see figure 3).

Examples

 VDB Deformer has been tested on several use cases. The most basic is the static

deformation of a volume (figure 5). More complex than this is a volume with an animated lattice

(figure 4). Finally a test was created on an animated flame simulation (figure 1). As is shown,

the deformations look plausible and usage was intuitive. Save for the gaps in the data, the

results are pretty good.

Figure 3: Example node layout

Future Work

 There are several parts of the

project that could stand to be

improved upon. Most

obviously is the continued

implementation of the “reverse

deformation” in the attempt to

remove data gaps. Additionally

the deformer currently only

works on VDBs with floating point data. As VDBs can

represent arbitrary datasets it would be nice to

template this tool to be able to use any input type

such as vectors, integers, and booleans. Furthermore

the deformer can only operate on one grid. In Houdini

it is not an infrequent occurrence for an object to be

represented by multiple VDBs (for example an

explosion may have a VDB for the smoke and fire as

well as other data such as velocity and temperature). In order to properly deform the entire

collection of volumes multiple deformations would need to be executed, which is inconvenient

and more costly.

Work

 This project was worked on by John Noonan with the assistance of both the ODFORCE

Houdini Development Kit and OpenVDB forums. It took approximately 80 hours to get to this

point.

Figure 5: Deformed volume with animated lattice control points along a sine wave.

Figure 4: Deformed static volume with high
compression and stretching

References

Thomas W. Sederberg and Scott R. Parry. 1986. Free-form deformation of solid geometric

models. In Proceedings of the 13th annual conference on Computer graphics and interactive

techniques (SIGGRAPH '86), David C. Evans and Russell J. Athay (Eds.). ACM, New York, NY,

USA, 151-160. DOI=http://dx.doi.org/10.1145/15922.15903

Gregory Ecker, Ravindra Dwivedi, and Ilan Gabai. 2016. Directed volcano getting the most out of

your simulations. In ACM SIGGRAPH 2016 Talks (SIGGRAPH '16). ACM, New York, NY, USA,

Article 3, 1 pages. DOI: https://doi-org/10.1145/2897839.2927454

Magnus Wrenninge and Michael Rice. 2016. Volume modeling techniques in The Good

Dinosaur. In ACM SIGGRAPH 2016 Talks (SIGGRAPH '16). ACM, New York, NY, USA, Article 63, 1

pages. DOI: https://doi.org/10.1145/2897839.2927397

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans.

Graph. 32, 3, Article 27 (July 2013), 22 pages. DOI: https://doi-org/10.1145/2487228.2487235

