Rendering Depth of Field and Bokeh Using Raytracing

John Andrews

Daniel Lubitz

Spring 2019

Abstract

One hallmark of the modern camera is the distinctive,
non-smooth blurring of out-of-focus objects, an effect
referred to as bokeh, which results from the optical
properties of the camera’s system of lenses. This effect
is often exploited by photographers for artistic effect,
but has often been disregarded in graphics due to its
complexity and computational cost. Using raytracing
and a virtual lens system, we simulate this effect.

1 Introduction

Computer graphics traditionally makes use of a pin-
hole camera model for rendering scenes. In this
model, each point on the image plane is reached by
exactly one ray of light from the scene, namely the
ray defined by the image plane point and the cam-
era aperture. Consequently, no part of the scene is
blurred or out of focus.

Real photography, however, abandoned pinhole
cameras long ago. When they are constrained by the
laws of physics, pinhole cameras are extremely lim-
iting of the light that reaches the image plane, and
therefore require very long exposure times. Real cam-
eras make use of lens systems to allow more light onto
the image plane, thus reducing exposure times, while
maintaining as much as possible of the tight corre-
spondence between object and image points. They
are, however, inherently limited in the range of points
for which they can enforce this correspondence. For a
given position of the image plane, object points that
lie in the corresponding focus plane are projected to
a single point, but points not on that plane project
onto a circle, called the circle of confusion, that grows
larger as the object point grows more distant from
the focus plane. Points whose circles of confusion are
larger than the smallest resolvable disk of the camera
sensor or the human eye appear blurred and out of
focus; such points are outside of the camera’s depth
of field.

Importantly for our discussion, the circle of con-
fusion is not a smooth blur; it is usually rather

sharply defined and more-or-less uniform over its
area. “Bokeh” refers to this effect; it is the artistic
and aesthetic quality of the out-of-focus parts of an
image, in which points of light are blurred into more-
or-less clearly defined shapes.

Bokeh is a very desirable effect to mimic in com-
puter graphics; while defocusing might be consid-
ered the next best thing for real photography, we are
now interested in using it to increase the realism of
computer-generated images, and to allow artists an-
other tool to create different aesthetic effects. It is
our goal to simulate this effect via raytracing.

2 Related work

In [McGraw, 2015], McGraw simulates defocus blur-
ring by applying synthetic bokeh as a post-processing
effect on an otherwise traditionally-rendered image.
A pure Gaussian convolution modulated by a depth
map is a simple approximation of defocus blurring,
though inaccurate; as discussed above, bokeh con-
sists of sharply defined shapes, and a Gaussian blur is
too dispersed. A more accurate approximation would
be a 2D convolution over the image with a kernel
in the shape of the camera aperture; however, full 2D
convolutions are computationally expensive. McGraw
provides a compromise, using multiple separable, 1D
linear kernels on each axis to approximate a sharp
2D convolution kernel, achieving both perceptual ac-
curacy and speed.

In [Wu et al., 2010], the authors instead use a ray-
tracing approach to accurately trace the propagation
of light through a camera’s lens system. They mathe-
matically model the lens system and refract each ray
through each lens surface before emitting it into the
scene. This approach has the advantage of realisti-
cally capturing bokeh and other lens effects such as
spherical aberration, and allows for non-circular aper-
ture shapes and resulting non-circular bokeh, at the
cost of performance; a great many samples per pixel
are required to integrate the light reaching each image
point from the lens with any degree of accuracy. In
[Wu et al., 2013], the same team extends this basic

approach with even more sophisticated lens effects,
including chromatic aberration.

[Joo et al., 2016] go so far as to simulate the lens
manufacturing process to create realistic imperfec-
tions and artifacts in their bokeh. Additionally, they
simulate aspheric lenses. Most lenses are composed
of spherical surfaces due to ease of manufacturing,
but such lenses suffer from imperfect convergence
of transmitted rays (the above-mentioned spherical
aberration). Aspheric lenses can produce better focus,
but are more difficult to model and manufacture. Joo
et al. raytrace such lenses using root-finding meth-
ods to produce a very highly-detailed image of the
lens system. However, they do not fully raytrace the
scene; instead, they use the raytraced lens system im-
age to modulate a traditional rendering, in a manner
similar to a 2D convolution.

Our approach is
[Wu et al., 2010].

most similar to that of

3 Overview of Gaussian optics

One of the chief problems of raytracing a lens system
is that not all rays cast towards the first lens surface
will actually make it through the system as a whole.
In fact, for any given point on the image plane, only
rays from a relatively small portion of the lens will
reach it; the others will be either internally reflected
by some lens element, or fail to clear some internal
aperture of the system. Uniformly sampling the entire
lens surface is therefore very wasteful of resources,
and to make the computation reasonably fast, we re-
quire some way to narrow down the sample space.
Gaussian optics provides us with exactly this, in the
form of an exit pupil. To that end, we present here an
overview of the relevant concepts from optics. Much
of this material is adapted from [Greivenkamp, 2004].

In an optical system, the aperture stop is the ele-
ment that most restricts the light than can enter the
image space of the system. It is frequently the phys-
ically narrowest element, but not always. Any light
that clears the aperture stop will make it to the image
plane. The exit pupil is the image of the aperture stop
in image space; in effect, any light that reaches the
image plane will come from the direction of a point
in the exit pupil (Figure 1). Hence, the exit pupil
defines the sample space for our raytracing. Finding
the exit pupil requires building up some background
machinery.

To a first approximation, the properties of an opti-
cal system can be determined using Gaussian optics.
This system assumes all surfaces within the system
are ideal refracting or reflecting elements, and makes

Object

Figure 1: The entrance pupil (EP) and exit pupil
(XP). The entrance pupil is the image of the aper-
ture stop in object space; this would be important
were we tracing rays from object space into the cam-
era, but for our purposes, we only need the exit pupil.
Figure from [Greivenkamp, 2004].

use of the following small-angle approximations for
the sine, cosine, and tangent functions:

sinr ~tanx =~ x

cosx ~ 1

These are the first-order Taylor expansions of these
functions around 0, accurate when |z| is small, and
are of great usefulness here due to their linearity.

Gaussian optics considers only systems of spherical
elements, axially aligned and rotationally symmetric
about that axis. By convention, the optical axis of the
system is assumed to be the z axis, with object space
towards negative z and image space towards positive
z. Each surface is modeled as a single plane perpen-
dicular to the optical axis at the surface’s vertex, the
point at which it intersects the axis. The radius of
curvature of the surface is a signed quantity indicat-
ing the concavity of the surface; specifically, it is the
directed distance from the surface vertex to its cen-
ter of curvature. Hence, a negative radius of curvature
indicates that the surface is concave towards object
space, and a positive radius of curvature indicates
that it is convex towards the same.

The basic technique of Gaussian optics is to reduce
systems of many surfaces to a single set of points on
the optical axis, the cardinal points, (and their corre-
sponding planes perpendicular to the axis): the front
and rear focal points, and the front and rear principal
points. Once these are known, the image of any object
point can be found via similar triangle analysis using
the following principle: any ray through the front fo-
cal point that intersects the front principal plane at a
height h from the optical axis emerges from the rear
principal plane at the same height parallel to the axis,
and vice versa (Figure 2).

For a single surface, the principal planes are coin-
cident at the surface’s vertex. The focal points are

¥

——y

. Fo

=
A

=3
-

Figure 2: The rear cardinal points of a single sur-
face. The principal points are coincident with the sur-
face vertex V. As demonstrated by the red ray, any
object-space ray incident on the front principal plane
is transmitted as a ray through the rear focal point
F’; a similar rule holds for image space rays and the
front focal point F. C'C is the center of curvature.
Figure from [Greivenkamp, 2004].

found as follows:

!

Optical power & = non
R
1
Effective focal length fr = Y
Front focal distance fr = —nfg

Rear focal distance f = n'fg

where n and n’ are the indices of refraction on, re-
spectively, the object space side and the image space
side of the surface, and R is the radius of curvature.
The focal distances are the signed distances from the
surface vertex to the corresponding focal points (Fig-
ure 2).

For two elements enclosing a material with index
of refraction my, with indices n = m; on the object
space side and n’ = n3 on the image space side of the
pair, we can find their joint principal planes via the
following:

t
T=—

n2

(I):(bl—Fq)Q—(I)lq)gT

d @,
n
d D,
P

In the above, t is the signed distance from the first
element’s rear principal plane to the second element’s
front principal plane; ®; and ®, are the optical pow-
ers of the first and second elements respectively, and

® is the joint optical power; d is the signed distance
from the first element’s front principal plane to the
joint front principal plane; and d’ is the signed dis-
tance from the second element’s rear principal plane
to the joint rear principal plane (Figure 3). The joint
focal points can be found as above for a single surface,
with the exception that fr and f}, are now signed dis-
tances from the front and rear principal planes respec-
tively, rather than from a surface vertex. Systems of
more than two elements can be reduced by repeatedly
applying this procedure to adjacent pairs of elements.

b, @ b,
iy
n, =n n, n;=n
F PRI PP Pl R [R F 'z
I N —
d Cod
—

Figure 3: Gaussian reduction of a two-element sys-
tem. Figure from [Greivenkamp, 2004].

To determine which lens element acts as the sys-
tem aperture stop, we perform a parazial raytrace
through the system. This is a trace of a ray very near
the optical axis, which remains near the optical axis
throughout the system, and makes use of the small-
angle approximations described earlier. The proce-
dure involves alternating two equations: the transfer
equation to determine the new height of the ray as
it arrives at the next element’s front principal plane,
and the refraction equation to determine the new an-
gle of the ray as it exits the element’s rear principal
plane:

Refraction: n'v’ = nu — y®

Transfer: v =y + u't/

In the above, u is the angle of the ray incident on
an element’s front principal plane, and «' is the angle
of the ray exiting the element’s rear principal plane;
n and n’ are the object and image space indices of re-
fraction around the element; y is the (signed) height
above the optical axis of the ray’s intersection with
the element’s principal planes, and ¥’ is the height
of the intersection with the next element’s principal
planes; ¢’ is the signed distance from the element’s
rear principal plane to the next element’s front prin-
cipal plane; and @ is the element’s optical power (Fig-
ure 4).

The refraction equation is based on Snell’s law of
refraction, using the small-angle approximation. The

from

Paraxial
[Greivenkamp, 2004].

Figure 4: raytracing. Figure

full law is this:
nsinf = n’sin ¢’

The —y® term in the paraxial refraction equation
accounts for the changing surface normal as distance
from the axis increases.

During a paraxial raytrace, we can record the ra-
tio |y|/a for each element of the system, where a is
the aperture radius of that element. The element for
which this ratio is greatest — the element for which
the ray passes proportionally closest to the aperture
— is the system aperture stop. Once we know which
element is the system aperture stop, we can reduce
the portion of the system behind that element and
perform similar triangle analysis to find its image in
the image space of the system; that image, finally, is
the exit pupil.

This procedure consists of a great many steps, but
each one individually is very simple. Computation-
ally, this calculation is among the least expensive
parts of our algorithm.

4 Modeling the lens system

Our model considers only spherical optical surfaces.
We specify the lens system in its own coordinate space
in units of millimeters, axially aligned on the z axis
with object space towards negative z, the convention
of Gaussian optics. Surfaces are listed from object
space to image space, with each surface specified by
its radius of curvature, the diameter of its aperture,
the index of refraction of the material on the image
space side of the surface, and the distance to the next
surface’s vertex. A surface with a radius of 0.00 is as-
sumed to be planar, and the medium in front of the
system is assumed to be air, with index of refrac-
tion 1.00. A diaphragm in the system is modeled as
a planar surface with air on either side of it. Figure
5 shows one lens configuration using this representa-
tion. It should be noted that this is the same repre-
sentation used by [Wu et al., 2010], and we used the

lens system configurations presented in that paper for
our examples.

radius thickness| index aperture
85.500 11.600 1.744 | 76.0
408.330 1.500 1.000 | 76.0
40.350 17.000 1.620 | 66.0
156.050 3.500 1.621 66.0
25.050 13.700 1.000 | 440
0.000 8.300 1.000 | 42.6
-36.800 3.500 1.689 | 44.0
55.000 23.000 1.744 | 52.0
-51.500 1.000 1.000 | 52.0
123.500 17.000 1.744 52.0
-204.960 | 0.000 1.000 | 52.0

Figure 5: The particular measurement for the lens
assembly used for our renderings. Figure from
[Wu et al., 2010].

After loading the lens system measurements, our
implementation performs a paraxial raytrace, as de-
scribed above, to determine which element of the sys-
tem acts as the system aperture stop. We then per-
form a Gaussian reduction on the portion of the sys-
tem behind the aperture stop, closer to image space,
and use that reduction to find the location and radius
of the exit pupil, and this concludes our preprocessing
of the lens system.

During raytracing, the lens system can be queried
for a ray through any point in the image. To generate
a ray, we select a uniformly random point in the exit
pupil and create a ray from the queried image point
through the pupil point, which we then trace through
the lens system.

Due to the way we model the lens system, there is
no need to test the ray for intersection with every sur-
face for every step of the lens system trace, or to add
an epsilon to intersection points to overcome floating-
point error; we know exactly the order in which each
ray will intersect the surfaces, and we simply ignore
all others for each step. So, in optical order, we in-
tersect the ray with the sphere (or plane) of the next
lens surface and determine the surface normal at the
intersection point. We use Snell’s law to compute the
refraction direction, and use this to create a new ray
for the next step of the trace.

While the calculation of the exit pupil provides

very useful boundaries on our sample space, it is
calculated via Gaussian optics, which is an approxi-
mation; sampling the exit pupil greatly increases the
probability that any given ray will make it through
the lens system, but does not provide a guarantee.
Therefore, at each surface, we compare the intersec-
tion point’s distance from the z axis with the aper-
ture radius of that surface, and discard the ray if it
exceeds that radius.

After the last surface has been intersected, we
transform the final ray into scene space using the
inverse of the camera view matrix. From there, the
color corresponding to this ray is determined via tra-
ditional recursive raytracing. For a single pixel, we
cast many rays through the lens, and determine the
final color by simple average of the colors returned by
those rays.

5 Other implementation details

Our implementation makes use of KD-trees to accel-
erate raytracing on triangle meshes. After loading the
geometry data for each mesh, we compute the cen-
troids of each triangle, and sort them along each axis.
Using this, we construct the KD-tree for the mesh by
recursively subdividing the mesh’s bounding box at
the median along the axis with the greatest range of
centroids. Triangles that span the divide are included
in both subtrees. When testing a ray for intersection
with a mesh, we first recursively test for intersection
with the KD-tree bounding boxes to generate a list
of potentially intersected faces.

We also implemented vertex normal interpolation
on the CPU for triangular faces, to allow triangle
meshes to appear smooth in our raytraced images.
Once an intersection point has been determined on a
triangle, we can compute the barycentric coordinates
«, B, of that point using Cramer’s rule. Then, we
compute the internal surface normal 7 as follows:

n = g +ﬁﬁb +’7ﬁc
n

[l

=il

where n,, 7, N, are the unit vertex normals of the
vertices corresponding to «, 3, and -y respectively.
Our implementation utilizes multithreading to ac-
celerate overall rendering times. Upon starting a ren-
dering, we divide the image into a grid of (approx-
imately) 20 x 20 pixel patches and spawn as many
threads as the system has physical processors. Each
thread renders a single patch at a time, querying the
main image structure for the next unassigned patch
after finishing each patch. Raytracing is an inherently

parallel algorithm; each pixel in the image can be
computed independently of any other pixel. Hence,
we see significant speedup using this scheme.

6 Early results and challenges

We began development by implementing a single thin
lens and placing it in the world. This proof of concept
allowed us to ensure that we could produce a coherent
image from a simple system. One feature of this early
test platform was that we could trace rays from a
point on the image plane to the entire surface of the
lens, then visualize those rays. This enabled us to
see whether or not the lens was refracting the rays
correctly.

Figure 6: Visualization of one pixel sampling the en-
tire lens surface in the test environment. Because of
the spherical lens, the rays do not converge to a single
point.

We were able to faintly capture the circle of confu-
sion, meaning our approach was working. The trouble
was getting an image that was meaningful, as we were
not using proper measurements at this point and the
positioning and size of the image plane, lens, and ob-
ject were essential guesswork.

Figure 7: The circle of confusion created by a small
sphere in front of a single thin lens.

The implementation of the thin lens was different
from the final project due to this lens being an actual
object the exists in the scene. It was made using two
intersecting spheres of the same diameter. A hit from
a ray on one sphere was checked to make sure it was
inside the other in order to be considered on the lens
surface.

Figure 8: A half-raytraced image of a sphere in front
of a thin lens. Due to lack of measurements, the
sphere was not the correct size nor in the correct po-
sition to get an image from. Some rays missed the
sphere and some hit it, creating the static pattern
seen here. This is also an example of what may hap-
pen with a low smaple count.

The transition to raytracing the full lens assem-
bly was where the most bugs arose, particularly sign
errors and vector math. In order to send a ray fully
through the assembly, we needed a system that would
perform refraction from an arbitrary material into an
arbitrary material at a point where the normal may
be facing forwards or backwards. It also needed to
check for conditions such as collision with one of the
stops or a ray refracting at such a steep angle that it
would not collide with the next lens. This complex-
ity required many attempts in order to nail down the
math.

The nature of raytracing is heavy computation. Be-
cause of the way our system gathers light for each
pixel from all possible directions out of the lens, we
need a large number of samples to generate a real-
istic image. This hurt testing as we were unable to
quickly check if a change to an algorithm actually
fixed anything. Adding multithreading dramatically
increased our ability to produce images and test at
an acceptable rate.

7 Results and discussion

All of the results we present here were rendered on
a Lenovo Thinkpad T450s laptop with an Intel i7 4-
core processor. We are able to produce accurate im-
ages that exhibit the desired depth of field and bokeh
effects at 200 x 200 pixels, with 250 lens samples per

Figure 9: An early bug from our lens assembly imple-
mentation. Here we see the effects of a single sign er-
ror in our refraction logic, which prevented the emerg-
ing rays from converging and caused an occasional ray
to actually be emitted backwards from the camera.

pixel, in under ten minutes.

All of our results used the lens assembly pictured
in Figure 5, which has an approximate effective focal
length of 100 mm. Different depths of field and bokeh
qualities may be achieved by different lens configura-
tions; this is one possible avenue for future work.

8 Future work

All lenses and other elements in the lens assembly
are perfectly spherical or circular. One possible av-
enue for further study would be to implement the
option to change these parameters and introduce as-
pheric lenses to the system. Additionally, rendering
an image using a non-circular aperture stop would
yield particularly interesting results, given that the
circle of confusion’s shape on the image plane is dic-
tated by the shape of the aperture stop. This would
involve more sophisticated raytracing algorithms as
the intersection detections would no longer be simple
equations. Actual modeling of the lens surfaces could
be done, but that would increase computation time
significantly. Pupil calculation would also need to be
reworked if the aperture could change shape.

In our system, we model light as a single color:
white. In reality, light is not a simple white but is
instead made up of different wavelengths. In order to
accurately model lens interactions with varying wave-
lengths of light, a more complete version of Snell’s law
would need to be put in place. In addition, finding a

Figure 10: A progression of images of a single square
light source as the camera zooms further out and the
light becomes more out of focus. Note that the defo-
cus blur is remarkably smooth; this may be a result
of the specific lens configuration used. Other combi-
nations of focal lengths and aperture diameters will
produce different bokeh qualities.

Figure 11: High resolution render of reflective bun-
nies. Depth of field is clearly apparent with the
ground plane. 500 x 500 pixels, 500 lens samples per
pixel, approximately 2.5 hours.

way to make raytracing with multiple rays each with
individual wavelengths efficient is non-trivial. Having
more than one color of ray to cast means many times
more rays in total to compute. Adding this would
allow the system to create chromatic aberration arti-
facts, adding to the realism of the image.

Taking the idea of replicating camera effects fur-
ther, another feature to implement could be lens flare.
This results from scattering in the lens assembly, usu-
ally caused by imperfections in the material makeup
of the lens elements. Another artifact not modelled
is refection of light off of the lenses. We only perform
complete refraction but some of the light is reflected
internally.

Because our system is modular in the sense that the
lens assembly is specified through a file separate from
the rest of the scene, it would be possible to experi-
ment with various types of configurations, including
setups that feature mirrors. In this way, perhaps cer-
tain reflecting telescopes and microscopes could even
be modeled.

The major performance bottleneck of our system
is not the lens assembly itself, but rather the recur-
sive raytracing that takes place in the scene. This is
especially expensive when rendering high-complexity
meshes like the Stanford Bunny. Nonetheless, since
each trace of the lens assembly is essentially the same,
it would be possible, and possibly beneficial, to cal-
culate the lens samples offline and store them as part

Figure 12: An array of red reflective spheres under
a red light, with noticeable bokeh in the out-of-focus
specular highlights. 200 x 200 pixels, 250 lens samples
per pixel, roughly 8:15 minutes.

of the lens configuration. This would require a large
amount of storage; each pixel in the image has a dif-
ferent set of samples. It is unclear if this would result
in a speed increase during the actual rendering, and
this might be an interesting experiment.

A possible enhancement to the efficiency of the ray-
tracer would be to use a dynamic sampling technique.
Because we are required to use many a large num-
ber of rays for each pixel, being able to cut down
on that requirement would mean great time savings.
For this technique, we would only send out for pix-
els where there is a large variation in returned color.
The greater the variation, the more samples would be
necessary to capture the true result. For pixels where
most of the rays come back looking the same, not
many more rays would need to be used to approxi-
mate the true color.

9 Attributions

John Andrews Wrote the raytracing engine, KD-
tree implementation, and vertex normal interpola-
tion. Wrote parsers for scene and materials files. Did
the optics math for finding the exit pupil. Integrated
the lens and lens assembly data structures with the
rest of the raytracer. Rendered most of the examples.

Daniel Lubitz Created early test environment to
ensure viability of strategies, worked out initial lens
refraction math, implemented early version of ray-

Figure 13: Array of red reflective spheres with blue
light patch showing circular bokeh effect. The blur-
ring on the light is significantly smoother than we
would like; c.f. the discussion under Figure 10. 200 x
200 pixels, 250 lens samples per pixel, approximately
9 minutes.

tracing system for lenses, developed lens and lens as-
sembly data structures and file conventions, Windows
compatibility debugging.

References
[Greivenkamp, 2004] Greivenkamp, J. E. (2004).
Field Guide to Geometrical Optics. SPIE Field

Guides. SPIE Press.

[Joo et al., 2016] Joo, H., Kwon, S., Lee, S., Eise-
mann, E., and Lee, S. (2016). Efficient ray tracing
through aspheric lenses and imperfect bokeh syn-
thesis. Computer Graphics Forum, 35(4):99-105.

[McGraw, 2015] McGraw, T. (2015). Fast bokeh ef-
fects using low-rank linear filters. The Visual Com-
puter, 31(5):601-611.

[Wu et al., 2010] Wu, J., Zheng, C., Hu, X., Wang,
Y., and Zhang, L. (2010). Realistic rendering of
bokeh effect based on optical aberrations. The Vi-
sual Computer, 26(6):555-563.

[Wu et al., 2013] Wu, J., Zheng, C., Hu, X., and Xu,
F. (2013). Rendering realistic spectral bokeh due to
lens stops and aberrations. The Visual Computer,
29(1):41-52.

