
Simulating Wave

Particles

Jonathan Cheng and Dhruv Patel

Rensselaer Polytechnic Institute of Technology

Abstract

After learning of fluids and different methods of

simulation, we were interested in other realistic

techniques of simulation. The principle in simulating

fluids is modeling a solution to the Navier-Stokes

Equations. These equations represent the

mathematics behind incompressible fluids with

aspects like pressure and viscosity. From our time

working on homework 2, we have had experience in

working with Eulerian grid based solutions to the

Navier-Stokes equations [Foster and Metaxas, 1996].

In this paper, we decided to look into and

implement one of the many techniques used to model

and simulate fluids, specifically liquids since gasses

are considered fluids. We specifically look at Wave

Particles [Yuksel et al, 2007], which are used to

model the surfaces of fluids and can be used to model

interactions with fluids.

1 Introduction

Fluid simulation and modelling has been a continuous

field of study throughout the past decade in computer

graphics. Many papers document new models for

simulation improving upon detail and realism while

maintaining speed. For this final project in the class

we looked at different ways to model fluids and

decided on trying to implement Wave Particles, a nice

‘hack’ at simulating the waves made by liquids and

the surface interactions fluids have. Another method

of modeling we discovered called Smooth Particle

Hydrodynamics (SPH) [Ihmsen, 2014] was also

considered for this project but we scrapped the idea

due to scale and disconnection with Wave Particles.

Our goal was to simulate realistic fluid surfaces and

their interactions using Wave Particles.

1.1 Overview

Our approach to use Wave Particles stemmed from

the complexity and realism they provided. The

concepts present by Yuksel et al. in his paper were

simple in representing surfaces of liquids, but the

underlying implementation was challenging to say

the least. While techniques like SPH are meshless,

they require many points of data and are

computationally complex on the CPU, Wave Particles

are fast and realistic enough for modelling simple

waves and fluid interactions. Although there have

been improvements made to SPH and its computation

complexity, Wave Particles are much faster and more

reactive to interactions.

In the next section we describe the

implementation and our code to apply Wave

Particles. In section 3 we analyze our results and

shortcomings on this project. We conclude with

section 4 and discuss further areas of improvements.

2 Implementation

Initially we planned to extend the code used in

homework 2, with the Eulerian grid based solution,

by adding wave particles on the surface. This

extension was not feasible and we scrapped our

attempts after trying for several hours. This meant we

had to implement wave particles without any previous

code, in essence starting from scratch. We were able

to use our homework 2 as reference and even utilized

the renderer and shaders for our project, but the core

implementation was made for our specific purposes.

Like homework 2, we implemented in project in C++

and utilized OpenGL for rendering our simulations.

We also used the vertex and fragment shaders as well

as the renderer files and the initial framework for

input provided from our homework 2 code.

2.1 Initial Attempts

Figure 1 Simple Wave From Wind

As stated before, our initial attempts at extending the

previous homework files wasted a lot of our time. We

assumed that the Eulerian grid based method could be

extended with wave particles without much changing

but we were incorrect. Previous work had indeed

reinforced the idea of extending the volume based

method used in homework 2 with a surface model and

even extended to a spray model for splashing

[O’Brien and Hodgins, 1995]. This model and paper

gave us the idea to implement wave particles for the

surface model portion. However, our attempts at

combining and extending our grid based volume

model into a column based model and adding surface

particles ended up being useless. These attempts at

extension required too many changes and revisions to

the already existing code, we deemed it better to start

from scratch.

Therefore, we decided to start with our surface

model, wave particles, and scaled the scope of this

project down to only focusing on the surface and

interactions with it. This lead to the current work in

progress we have on wave particles. The process of

starting over began with new classes for each element

in the scene. We made classes for the wave particles,

the wave itself (i.e. the surface), and the objects

interacting with the surface. Each object was further

separated into their own class for convenience. In

total we had, four new classes representing our scene,

one for the surface, one for the wave particles, and one

for each object which were a sphere and cube. We

also utilized the input framework provided from

homework 2 for familiar usage.

2.2 Wave Particles

Wave particles are the core concept of this project and

are the only ‘objects’ of influence that can change the

scene. This meant that the surface of our fluid was

unchanging unless wave particles are generated onto it.

We implemented this by making a mesh surface using

points like a cloth draped on a horizontal surface. This

surface would then be influenced by the wave particles

we generated from interactions with the surface.

Wave particles, described by Yuksel et al., are

particles used to represent bumps or dents in the

surface, otherwise known as a wave. These particles,

represented as points on the surface of a fluid, have

properties that allow for complete knowledge of

where the particle is at any given time. These wave

particles are spawned with its birth position, birth

time, direction, angle of dispersion, and amplitude,

which are all used to represent the wave at its position

on the surface. This representation of a wave particle

is then utilized as a height field over the surface of the

wave. In other words, using the wave particles we find

which points on the surface need to be moved and

move them. The wave particles are also spawned with

a set velocity, there is no acceleration and waves are

dampened to a certain amplitude threshold before

death. This simulates the presence of friction and

gravity that slowly force the wave towards a flat

surface again.

This implementation, provided by Yuksel et

al., is modeled using a height field and can be

represented by the equation

𝑧(𝑥, 𝑡) = 𝑧0 + 𝜂𝑧(𝑥, 𝑡) ,

where the z0 is the base height of the surface and

𝜂𝑧(𝑥, 𝑡) is the deviation field. The deviation field,

𝜂𝑧(𝑥, 𝑡) , is then calculated by summing all local

deviation to wave particle 𝑖

𝜂𝑧(𝑥, 𝑡) = ∑ 𝐷𝑖(𝑥, 𝑡)

𝑖

 ,

where 𝐷𝑖(𝑥, 𝑡) is the deviation of point x in respect to

wave particle 𝑖 at time 𝑡. This deviation can then be

calculated using the distance between the point on the

surface to the wave particle and its amplitude. By

extending this with a blending function for wave

fronts, the equation is more realistic, as compared to

multiple bumps or dents next to each other on the

surface. For the sake of simplicity, Yuksel et al. use a

simple cosine function for blending and the equation

then becomes

𝐷𝑖(𝑥, 𝑡) =
𝑎𝑖

2
(cos (

𝜋|𝑥 − 𝑥𝑖(𝑡)|

𝑟𝑖
) + 1) Π (

|𝑥 − 𝑥𝑖(𝑡)|

2𝑟𝑖
)

where a represents the amplitude, r represents the

radius, and xi(t) represent the position at time t of

wave particle i. The Π(x)denotes a rectangular

function used by Yuksel et al. and can be described as

a piecewise function where it returns 1 for |𝑥| <
1

2
,

1

2

for |𝑥| =
1

2
, and 0 otherwise. These equations denote

the impact a wave particle has on the point at position

𝑥 and are used to find the total deviation made to the

point.

Extending these functions even further into

longitudinal waveforms, we can change alter the

positions of the surface for a sharper wave. As only

one dimension was calculated in the previous

dimension, the longitudinal extension returns the new

position in the remaining 2 dimensions for 3

dimensions. We can now find the position of the new

point at time t with the longitudinal equation provided

𝑥′(𝑥, 𝑡) = 𝑥 + 𝜂(𝑥, 𝑡) ,

where the deviation field, 𝜂(𝑥, 𝑡), now accounts for

all 3 dimensions. In this sense we are only missing

𝜂𝑥𝑦(𝑥, 𝑡), which can be represented as

𝜂𝑥𝑦(𝑥, 𝑡) = ∑ 𝐷𝑖
𝐿(𝑥, 𝑡)

𝑖

 ,

where 𝐷𝑖
𝐿(𝑥, 𝑡) represents the longitudinal deviation

for the point x on the surface at time t to wave particle

i. This means that the horizontal position will change

for the surface. This is applied because waves are not

perfect curves and form sharp points when rising.

This new longitudinal deviation accounts for this and

applies a factor to the normal height deviation in the

form of

𝐷𝑖
𝐿(𝑥, 𝑡) = 𝐿𝑖(𝑢𝑖̂ ∙ (𝑥 − 𝑥𝑖))𝐷𝑖(𝑥, 𝑡) ,

where 𝐿𝑖 is a vector function describing the

longitudinal waveform and 𝑢𝑖̂ is the direction of wave

particle 𝑖. Using these equations, we were able to

calculate new positions for points on the surface that

were affected by the wave particles being generated.

This also allows for wave particle overlapping to

create bigger waves.

The only real ‘movement’ in this model is

performed by the wave particles on the surface. These

particles are moved through constant acceleration

with a dampening on amplitude each time step. To

accurately simulate waves moving, wave particles

have two unique actions during their lifetime:

Subdivision and Reflection. These two actions are

used to animate the wave moving through the scene.

Figure 2 Subdivision

Subdivision is when the particle is more than

half a radius away from its neighboring wave

particles. This means that the wave front is spreading

too thin and needs more particles to maintain the

smooth connection between wave particles. In this

process the current wave particle is subdivided into

three new wave particles using the dispersion angle of

the current wave particle. These new wave particles

are made in the new time step to maintain smooth

wave fronts because they bridge the ‘gap between

neighboring wave particles.

Figure 3 Reflection

Reflection, like the name implies, is the

process of wave particles reflecting off surface

boundaries, like walls. Reflection is handled by

maintaining boundary conditions so wave particles do

not extend past walls or boundaries in the scene. We

had some trouble in our implementation, since

checking the position at the current time did not

exceed the boundary, but the next time step would.

However, since the point in this case would already

be outside, the new position calculated wouldn’t be

correct. We fixed this by checking ahead to account

for this.

Utilizing these two actions for wave particles

we can find the time each particle performs these

actions to speed up processing time. By maintaining a

constant queue of which particle needs to move at

what time, we can cut down on computation for

unnecessary wave particles that don’t need to perform

any of the two actions. This means we don’t have to

visit all the wave particles and can focus on only the

ones that need to subdivide or reflect.

Lastly, wave particles are removed once the

amplitude has lowered past a certain threshold. This

allows for natural waves to die out after spawning and

maintains realism in the simulation.

2.3 Wave Generation

Waves are generated when wave particles are created

at points on the surface. These points are determined

by the interactions made to the surface as seen in

Figure 1. Yuksel et al. provides examples of wind

which can generate waves at random points along the

surface. An important note is that wave particles are

generated in groups since a single point of interaction

on a surface is near impossible in reality. This means

that the surface of an object colliding with the surface

of the fluid generates points along the face of the

surface touching the water. In other words, the

collision between water and object spawn wave

particles along the faces that collide. Figure 2 shows

the method of reflection as described by Wave

Particles [Yuksel 2007].

For the case of wind, the surfaces interacting

are arbitrary and can be generated at random. This

results in differing lengths of wave fronts at random

points on the surface of fluids for waves generated by

the wind. Solids interacting with the surface also

spawn wave particles, but in specific points around

the object face colliding with the surface. These wave

particles are then propagated through the scene to

simulate the waves caused from the object.

Figure 4 Wave Ring

Figure 5 Failed Dispersion

The project we made to implement surface

interactions of fluids used the aforementioned wave

particles only. Unfortunately we were unable to finish

full implementation of subdivision which leads to

discontinuity over the wave fronts simulated. Our

model and input are closely related to the cloth input

model for homework 2, where we define the area of

the surface and extended the input to include the

objects that might fall onto the surface.

The generation of objects works and is

randomly placed across a height specified by the input

file. We did not have time to include collision

detection for the objects, so spawning more than one

may result in objects clipping into each other. When

given a base surface and no objects, our simulation

runs a simple wave produced by the wind. The wave

is defined over the surface and moves in the positive

x direction. The wave does imitate reality and

smoothly runs and reflects over the surface and

boundaries. We were unable to attach a video to this

paper, but our simulation was indeed very similar to

Yuksel et al. simulation of a confined wave.

Subdivision was tested by spawning a ring of wave

particles, which would be like simulating a drop into

the surface. Since we did not have enough time to

implement objects falling into the surface, we

specifically defined the ring and tested for subdivision

this way. This test clearly shows our lack of

subdivision of wave particles and can be seen in

Figure 3.

4 Conclusion

This project was motivated by our interests in

simulating fluids realistically. Even though the SPH

model [Ihmsen, 2014] was an alluring and interesting

method, we decided to start with simple fluid surfaces

and planned to extend this towards a full three part

system that can include wave particles

[O’Brien and Hodgins, 1995]. Due to time constraints

and other projects and assignments, our time spent on

this project was shorter than we would have liked. We

were unable to model depth and object motion, but

were able to simulate the waves themselves. In total

we spent an equal amount of time working towards

our current progress with a total of around 46 hours

between the both of us. The results we obtained were

very successful and implied the possibility for future

work in extended this into a

three part system.

Future work could be made into extending and

fixing the current program. In regards to the objects,

animation can be added as well as collision detection.

The depth of the fluid can also be added by using a

vertex shader for subsurface coloring. There are also

extensions that we did not implement for wave

particles, namely subsurface objects and their

interactions with the surface.

Overall, this project showed us the

possibilities we could achieve in simulating realistic

fluids. In all fairness, we were not able to fully finish

this project, but the potential and future definitely

seem promising with the realistic results we obtained.

Acknowledgements We would like to extend our

sincere gratitude to Professor Cutler for allowing us

this opportunity and providing us a framework to start

with. We would also like to thank Yuksel et al. in their

contributions to computer graphics and fluid

simulations.

References

FOSTER, N., AND METAXAS, D. 1996. Realistic

animation of liquids. Graph. Models Image

Process. 58, 5, 471–483.

3 Results

O’BRIEN, J. F., AND HODGINS, J. K. 1995.

Dynamic simulation of splashing fluids. In CA

’95: Proc. of the Computer Animation, 198

YUKSEL, C., HOUSE, H. D., AND K, J. 2007.

Wave Particles. In ACM SIGGRAPH 2007, 99.

IHMSEN, M., ORTHMANN, J., SOLENTHALER,

B., KOLB, A., TESCHNER, M. 2014. SPH Fluids

in Computer Graphics. In EUROGRAPHICS

2014 - State of the Art

Reports, 21-42

