Simulating Wave
Particles

Jonathan Cheng and Dhruv Patel
Rensselaer Polytechnic Institute of Technology

Abstract

After learning of fluids and different methods of
simulation, we were interested in other realistic
techniques of simulation. The principle in simulating
fluids is modeling a solution to the Navier-Stokes
Equations. These equations represent the
mathematics behind incompressible fluids with
aspects like pressure and viscosity. From our time
working on homework 2, we have had experience in
working with Eulerian grid based solutions to the
Navier-Stokes equations [Foster and Metaxas, 1996].

In this paper, we decided to look into and
implement one of the many techniques used to model
and simulate fluids, specifically liquids since gasses
are considered fluids. We specifically look at Wave
Particles [Yuksel et al, 2007], which are used to
model the surfaces of fluids and can be used to model
interactions with fluids.

1 Introduction

Fluid simulation and modelling has been a continuous
field of study throughout the past decade in computer
graphics. Many papers document new models for
simulation improving upon detail and realism while
maintaining speed. For this final project in the class
we looked at different ways to model fluids and
decided on trying to implement Wave Particles, a nice
‘hack’ at simulating the waves made by liquids and
the surface interactions fluids have. Another method
of modeling we discovered called Smooth Particle
Hydrodynamics (SPH) [Ihmsen, 2014] was also
considered for this project but we scrapped the idea
due to scale and disconnection with Wave Particles.
Our goal was to simulate realistic fluid surfaces and
their interactions using Wave Particles.

1.1 Overview

Our approach to use Wave Particles stemmed from
the complexity and realism they provided. The
concepts present by Yuksel et al. in his paper were
simple in representing surfaces of liquids, but the
underlying implementation was challenging to say
the least. While techniques like SPH are meshless,
they require many points of data and are
computationally complex on the CPU, Wave Particles
are fast and realistic enough for modelling simple
waves and fluid interactions. Although there have
been improvements made to SPH and its computation
complexity, Wave Particles are much faster and more
reactive to interactions.

In the next section we describe the
implementation and our code to apply Wave
Particles. In section 3 we analyze our results and
shortcomings on this project. We conclude with
section 4 and discuss further areas of improvements.

2 Implementation

Initially we planned to extend the code used in
homework 2, with the Eulerian grid based solution,
by adding wave particles on the surface. This
extension was not feasible and we scrapped our
attempts after trying for several hours. This meant we
had to implement wave particles without any previous
code, in essence starting from scratch. We were able
to use our homework 2 as reference and even utilized
the renderer and shaders for our project, but the core
implementation was made for our specific purposes.
Like homework 2, we implemented in project in C++
and utilized OpenGL for rendering our simulations.
We also used the vertex and fragment shaders as well
as the renderer files and the initial framework for
input provided from our homework 2 code.

2.1 Initial Attempts

Figure 1 Simple Wave From Wind

As stated before, our initial attempts at extending the
previous homework files wasted a lot of our time. We
assumed that the Eulerian grid based method could be
extended with wave particles without much changing
but we were incorrect. Previous work had indeed
reinforced the idea of extending the volume based
method used in homework 2 with a surface model and
even extended to a spray model for splashing
[O’Brien and Hodgins, 1995]. This model and paper
gave us the idea to implement wave particles for the
surface model portion. However, our attempts at
combining and extending our grid based volume
model into a column based model and adding surface
particles ended up being useless. These attempts at
extension required too many changes and revisions to
the already existing code, we deemed it better to start
from scratch.

Therefore, we decided to start with our surface
model, wave particles, and scaled the scope of this
project down to only focusing on the surface and
interactions with it. This lead to the current work in
progress we have on wave particles. The process of
starting over began with new classes for each element
in the scene. We made classes for the wave particles,
the wave itself (i.e. the surface), and the objects
interacting with the surface. Each object was further
separated into their own class for convenience. In
total we had, four new classes representing our scene,
one for the surface, one for the wave particles, and one
for each object which were a sphere and cube. We
also utilized the input framework provided from
homework 2 for familiar usage.

2.2 Wave Particles

Wave particles are the core concept of this project and
are the only ‘objects’ of influence that can change the
scene. This meant that the surface of our fluid was
unchanging unless wave particles are generated onto it.
We implemented this by making a mesh surface using
points like a cloth draped on a horizontal surface. This
surface would then be influenced by the wave particles
we generated from interactions with the surface.

Wave particles, described by Yuksel etal., are
particles used to represent bumps or dents in the
surface, otherwise known as a wave. These particles,
represented as points on the surface of a fluid, have
properties that allow for complete knowledge of
where the particle is at any given time. These wave
particles are spawned with its birth position, birth
time, direction, angle of dispersion, and amplitude,
which are all used to represent the wave at its position
on the surface. This representation of a wave particle
is then utilized as a height field over the surface of the
wave. In other words, using the wave particles we find
which points on the surface need to be moved and
move them. The wave particles are also spawned with
a set velocity, there is no acceleration and waves are
dampened to a certain amplitude threshold before
death. This simulates the presence of friction and
gravity that slowly force the wave towards a flat
surface again.

This implementation, provided by Yuksel et
al., is modeled using a height field and can be
represented by the equation

Z(x, t) = Zy + nz(xt t))

where the zp is the base height of the surface and
n,(x,t) is the deviation field. The deviation field,
n,(x,t), is then calculated by summing all local
deviation to wave particle i

mGet) =) D),

where D;(x, t) is the deviation of point x in respect to
wave particle i at time t. This deviation can then be
calculated using the distance between the point on the

surface to the wave particle and its amplitude. By
extending this with a blending function for wave
fronts, the equation is more realistic, as compared to
multiple bumps or dents next to each other on the
surface. For the sake of simplicity, Yuksel et al. use a
simple cosine function for blending and the equation
then becomes

Dy (x,) = %(Cos (M) " 1) i (W)

where a represents the amplitude, r represents the
radius, and x;(t) represent the position at time t of

wave particle i. The I1(X)denotes a rectangular
function used by Yuksel et al. and can be described as

. . . . 11
a piecewise function where it returns 1 for |x| < >3

for |x| = % and 0 otherwise. These equations denote

the impact a wave particle has on the point at position
x and are used to find the total deviation made to the
point.

Extending these functions even further into
longitudinal waveforms, we can change alter the
positions of the surface for a sharper wave. As only
one dimension was calculated in the previous
dimension, the longitudinal extension returns the new
position in the remaining 2 dimensions for 3
dimensions. We can now find the position of the new
point at time t with the longitudinal equation provided

x'(x,t) =x+n(x,t),

where the deviation field, n(x,t), now accounts for
all 3 dimensions. In this sense we are only missing
Ny (x,t), Which can be represented as

Ney(x, 1) = Z Di(x,0),

where DF(x, t) represents the longitudinal deviation
for the point x on the surface at time t to wave particle
i. This means that the horizontal position will change
for the surface. This is applied because waves are not
perfect curves and form sharp points when rising.
This new longitudinal deviation accounts for this and
applies a factor to the normal height deviation in the
form of

DE(x,t) = Li(@, - (x — x))D;(x, 1),

where L; is a vector function describing the
longitudinal waveform and 1, is the direction of wave
particle i. Using these equations, we were able to
calculate new positions for points on the surface that
were affected by the wave particles being generated.
This also allows for wave particle overlapping to
create bigger waves.

The only real ‘movement’ in this model is
performed by the wave particles on the surface. These
particles are moved through constant acceleration
with a dampening on amplitude each time step. To
accurately simulate waves moving, wave particles
have two unique actions during their lifetime:
Subdivision and Reflection. These two actions are
used to animate the wave moving through the scene.

ol
Cat
Cas

Cad
L

birth position 7 _______________—.—V
& —1 6> e
T A C N T8
ispersion angle ~ / :
P
S

Figure 2 Subdivision

Subdivision is when the particle is more than
half a radius away from its neighboring wave
particles. This means that the wave front is spreading
too thin and needs more particles to maintain the
smooth connection between wave particles. In this
process the current wave particle is subdivided into
three new wave particles using the dispersion angle of
the current wave particle. These new wave particles
are made in the new time step to maintain smooth
wave fronts because they bridge the ‘gap between
neighboring wave particles.

new birth position

‘\Eirth position “

g

Figure 3 Reflection

Reflection, like the name implies, is the
process of wave particles reflecting off surface
boundaries, like walls. Reflection is handled by
maintaining boundary conditions so wave particles do
not extend past walls or boundaries in the scene. We
had some trouble in our implementation, since
checking the position at the current time did not
exceed the boundary, but the next time step would.
However, since the point in this case would already
be outside, the new position calculated wouldn’t be
correct. We fixed this by checking ahead to account
for this.

Utilizing these two actions for wave particles
we can find the time each particle performs these
actions to speed up processing time. By maintaining a
constant queue of which particle needs to move at
what time, we can cut down on computation for
unnecessary wave particles that don’t need to perform
any of the two actions. This means we don’t have to
visit all the wave particles and can focus on only the
ones that need to subdivide or reflect.

Lastly, wave particles are removed once the
amplitude has lowered past a certain threshold. This
allows for natural waves to die out after spawning and
maintains realism in the simulation.

2.3 Wave Generation

Figure 4 Wave Ring

Waves are generated when wave particles are created
at points on the surface. These points are determined
by the interactions made to the surface as seen in
Figure 1. Yuksel et al. provides examples of wind
which can generate waves at random points along the
surface. An important note is that wave particles are
generated in groups since a single point of interaction
on a surface is near impossible in reality. This means
that the surface of an object colliding with the surface
of the fluid generates points along the face of the
surface touching the water. In other words, the
collision between water and object spawn wave
particles along the faces that collide. Figure 2 shows
the method of reflection as described by Wave
Particles [Yuksel 2007].

For the case of wind, the surfaces interacting
are arbitrary and can be generated at random. This
results in differing lengths of wave fronts at random
points on the surface of fluids for waves generated by
the wind. Solids interacting with the surface also
spawn wave particles, but in specific points around
the object face colliding with the surface. These wave
particles are then propagated through the scene to
simulate the waves caused from the object.

3 Results

Figure 5 Failed Dispersion

The project we made to implement surface
interactions of fluids used the aforementioned wave
particles only. Unfortunately we were unable to finish
full implementation of subdivision which leads to
discontinuity over the wave fronts simulated. Our
model and input are closely related to the cloth input
model for homework 2, where we define the area of
the surface and extended the input to include the
objects that might fall onto the surface.

The generation of objects works and is
randomly placed across a height specified by the input
file. We did not have time to include collision
detection for the objects, so spawning more than one
may result in objects clipping into each other. When
given a base surface and no objects, our simulation
runs a simple wave produced by the wind. The wave
is defined over the surface and moves in the positive
x direction. The wave does imitate reality and
smoothly runs and reflects over the surface and
boundaries. We were unable to attach a video to this
paper, but our simulation was indeed very similar to
Yuksel et al. simulation of a confined wave.
Subdivision was tested by spawning a ring of wave
particles, which would be like simulating a drop into
the surface. Since we did not have enough time to
implement objects falling into the surface, we
specifically defined the ring and tested for subdivision
this way. This test clearly shows our lack of
subdivision of wave particles and can be seen in
Figure 3.

4 Conclusion

This project was motivated by our interests in
simulating fluids realistically. Even though the SPH
model [IThmsen, 2014] was an alluring and interesting
method, we decided to start with simple fluid surfaces
and planned to extend this towards a full three part
system that can include wave particles

[O’Brien and Hodgins, 1995]. Due to time constraints
and other projects and assignments, our time spent on
this project was shorter than we would have liked. We
were unable to model depth and object motion, but
were able to simulate the waves themselves. In total
we spent an equal amount of time working towards
our current progress with a total of around 46 hours
between the both of us. The results we obtained were
very successful and implied the possibility for future
work in extended this into a

three part system.

Future work could be made into extending and
fixing the current program. In regards to the objects,
animation can be added as well as collision detection.
The depth of the fluid can also be added by using a
vertex shader for subsurface coloring. There are also
extensions that we did not implement for wave
particles, namely subsurface objects and their
interactions with the surface.

Overall, this project showed us the
possibilities we could achieve in simulating realistic
fluids. In all fairness, we were not able to fully finish
this project, but the potential and future definitely
seem promising with the realistic results we obtained.

Acknowledgements We would like to extend our
sincere gratitude to Professor Cutler for allowing us
this opportunity and providing us a framework to start
with. We would also like to thank Yuksel etal. in their
contributions to computer graphics and fluid
simulations.

References

FOSTER, N., AND METAXAS, D. 1996. Realistic
animation of liquids. Graph. Models Image
Process. 58, 5, 471-483.

O’BRIEN, J. F., AND HODGINS, J. K. 1995.
Dynamic simulation of splashing fluids. In CA

'95: Proc. of the Computer Animation, 198

YUKSEL, C., HOUSE, H. D., AND K, J. 2007.
Wave Particles. In ACM SIGGRAPH 2007, 99.

IHMSEN, M., ORTHMANN, J., SOLENTHALER,
B., KOLB, A, TESCHNER, M. 2014. SPH Fluids
in Computer Graphics. In EUROGRAPHICS
2014 - State of the Art
Reports, 21-42

