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Abstract  
  

After learning of fluids and different methods of 

simulation, we were interested in other realistic 

techniques of simulation. The principle in simulating 

fluids is modeling a solution to the Navier-Stokes 

Equations. These equations represent the 

mathematics behind incompressible fluids with 

aspects like pressure and viscosity. From our time 

working on homework 2, we have had experience in 

working with Eulerian grid based solutions to the 

Navier-Stokes equations [Foster and Metaxas, 1996].  

In this paper, we decided to look into and 

implement one of the many techniques used to model 

and simulate fluids, specifically liquids since gasses 

are considered fluids. We specifically look at Wave 

Particles [Yuksel et al, 2007], which are used to 

model the surfaces of fluids and can be used to model 

interactions with fluids.  

  

1 Introduction  
  

Fluid simulation and modelling has been a continuous 

field of study throughout the past decade in computer 

graphics. Many papers document new models for 

simulation improving upon detail and realism while 

maintaining speed. For this final project in the class 

we looked at different ways to model fluids and 

decided on trying to implement Wave Particles, a nice 

‘hack’ at simulating the waves made by liquids and 

the surface interactions fluids have. Another method 

of modeling we discovered called Smooth Particle 

Hydrodynamics (SPH) [Ihmsen, 2014] was also 

considered for this project but we scrapped the idea 

due to scale and disconnection with Wave Particles. 

Our goal was to simulate realistic fluid surfaces and 

their interactions using Wave Particles.  

  

  

  

   

1.1 Overview  
  

Our approach to use Wave Particles stemmed from 

the complexity and realism they provided. The 

concepts present by Yuksel et al. in his paper were 

simple in representing surfaces of liquids, but the 

underlying implementation was challenging to say 

the least. While techniques like SPH are meshless, 

they require many points of data and are 

computationally complex on the CPU, Wave Particles 

are fast and realistic enough for modelling simple 

waves and fluid interactions. Although there have 

been improvements made to SPH and its computation 

complexity, Wave Particles are much faster and more 

reactive to interactions.  

In the next section we describe the 

implementation and our code to apply Wave 

Particles. In section 3 we analyze our results and 

shortcomings on this project. We conclude with 

section 4 and discuss further areas of improvements.  

  

2 Implementation  
  

Initially we planned to extend the code used in 

homework 2, with the Eulerian grid based solution, 

by adding wave particles on the surface. This 

extension was not feasible and we scrapped our 

attempts after trying for several hours. This meant we 

had to implement wave particles without any previous 

code, in essence starting from scratch. We were able 

to use our homework 2 as reference and even utilized 

the renderer and shaders for our project, but the core 

implementation was made for our specific purposes. 

Like homework 2, we implemented in project in C++ 

and utilized OpenGL for rendering our simulations. 

We also used the vertex and fragment shaders as well 

as the renderer files and the initial framework for 

input provided from our homework 2 code.  



  

2.1 Initial Attempts  

 
Figure 1 Simple Wave From Wind 

As stated before, our initial attempts at extending the 

previous homework files wasted a lot of our time. We 

assumed that the Eulerian grid based method could be 

extended with wave particles without much changing 

but we were incorrect. Previous work had indeed 

reinforced the idea of extending the volume based 

method used in homework 2 with a surface model and 

even extended to a spray model for splashing 

[O’Brien and Hodgins, 1995]. This model and paper 

gave us the idea to implement wave particles for the 

surface model portion. However, our attempts at 

combining and extending our grid based volume 

model into a column based model and adding surface 

particles ended up being useless. These attempts at 

extension required too many changes and revisions to 

the already existing code, we deemed it better to start 

from scratch.  

Therefore, we decided to start with our surface 

model, wave particles, and scaled the scope of this 

project down to only focusing on the surface and 

interactions with it. This lead to the current work in 

progress we have on wave particles. The process of 

starting over began with new classes for each element 

in the scene. We made classes for the wave particles, 

the wave itself (i.e. the surface), and the objects 

interacting with the surface. Each object was further 

separated into their own class for convenience. In 

total we had, four new classes representing our scene, 

one for the surface, one for the wave particles, and one 

for each object which were a sphere and cube. We 

also utilized the input framework provided from 

homework 2 for familiar usage.  

  

2.2 Wave Particles  
  

Wave particles are the core concept of this project and 

are the only ‘objects’ of influence that can change the 

scene. This meant that the surface of our fluid was 

unchanging unless wave particles are generated onto it. 

We implemented this by making a mesh surface using 

points like a cloth draped on a horizontal surface. This 

surface would then be influenced by the wave particles 

we generated from interactions with the surface.  

Wave particles, described by Yuksel et al., are 

particles used to represent bumps or dents in the 

surface, otherwise known as a wave. These particles, 

represented as points on the surface of a fluid, have 

properties that allow for complete knowledge of 

where the particle is at any given time. These wave 

particles are spawned with its birth position, birth 

time, direction, angle of dispersion, and amplitude, 

which are all used to represent the wave at its position 

on the surface. This representation of a wave particle 

is then utilized as a height field over the surface of the 

wave. In other words, using the wave particles we find 

which points on the surface need to be moved and 

move them. The wave particles are also spawned with 

a set velocity, there is no acceleration and waves are 

dampened to a certain amplitude threshold before 

death. This simulates the presence of friction and 

gravity that slowly force the wave towards a flat 

surface again.  

This implementation, provided by Yuksel et 

al., is modeled using a height field and can be 

represented by the equation   

 

𝑧(𝑥, 𝑡) = 𝑧0 + 𝜂𝑧(𝑥, 𝑡) ,  
 

where the z0 is the base height of the surface and 

𝜂𝑧(𝑥, 𝑡)  is the deviation field. The deviation field, 

𝜂𝑧(𝑥, 𝑡) , is then calculated by summing all local 

deviation to wave particle 𝑖  
 

𝜂𝑧(𝑥, 𝑡) = ∑ 𝐷𝑖(𝑥, 𝑡)

𝑖

 , 

 

where 𝐷𝑖(𝑥, 𝑡) is the deviation of point x in respect to 

wave particle 𝑖 at time 𝑡. This deviation can then be 

calculated using the distance between the point on the 



surface to the wave particle and its amplitude. By 

extending this with a blending function for wave 

fronts, the equation is more realistic, as compared to 

multiple bumps or dents next to each other on the 

surface. For the sake of simplicity, Yuksel et al. use a 

simple cosine function for blending and the equation 

then becomes  

 

𝐷𝑖(𝑥, 𝑡) =
𝑎𝑖

2
(cos (

𝜋|𝑥 − 𝑥𝑖(𝑡)|

𝑟𝑖
) + 1) Π (

|𝑥 − 𝑥𝑖(𝑡)|

2𝑟𝑖
) 

where a represents the amplitude, r represents the 

radius, and xi(t) represent the position at time t of 

wave particle i. The Π(x)denotes  a rectangular 

function used by Yuksel et al. and can be described as 

a piecewise function where it returns 1 for |𝑥| <
1

2
, 

1

2
 

for  |𝑥| =
1

2
, and 0 otherwise. These equations denote 

the impact a wave particle has on the point at position 

𝑥 and are used to find the total deviation made to the 

point.  

Extending these functions even further into 

longitudinal waveforms, we can change alter the 

positions of the surface for a sharper wave. As only 

one dimension was calculated in the previous 

dimension, the longitudinal extension returns the new 

position in the remaining 2 dimensions for 3 

dimensions. We can now find the position of the new 

point at time t with the longitudinal equation provided  

 

𝑥′(𝑥, 𝑡) = 𝑥 + 𝜂(𝑥, 𝑡) , 
 

where the deviation field, 𝜂(𝑥, 𝑡), now accounts for 

all 3 dimensions. In this sense we are only missing  

𝜂𝑥𝑦(𝑥, 𝑡), which can be represented as  

 

𝜂𝑥𝑦(𝑥, 𝑡) = ∑ 𝐷𝑖
𝐿(𝑥, 𝑡)

𝑖

 , 

 

where 𝐷𝑖
𝐿(𝑥, 𝑡) represents the longitudinal deviation 

for the point x on the surface at time t to wave particle 

i. This means that the horizontal position will change 

for the surface. This is applied because waves are not 

perfect curves and form sharp points when rising. 

This new longitudinal deviation accounts for this and 

applies a factor to the normal height deviation in the 

form of   

 

𝐷𝑖
𝐿(𝑥, 𝑡) = 𝐿𝑖(𝑢𝑖̂ ∙ (𝑥 − 𝑥𝑖))𝐷𝑖(𝑥, 𝑡) , 

 

where 𝐿𝑖  is a vector function describing the 

longitudinal waveform and 𝑢𝑖̂ is the direction of wave 

particle 𝑖. Using these equations, we were able to 

calculate new positions for points on the surface that 

were affected by the wave particles being generated. 

This also allows for wave particle overlapping to 

create bigger waves.  

The only real ‘movement’ in this model is 

performed by the wave particles on the surface. These 

particles are moved through constant acceleration 

with a dampening on amplitude each time step. To 

accurately simulate waves moving, wave particles 

have two unique actions during their lifetime: 

Subdivision and Reflection. These two actions are 

used to animate the wave moving through the scene. 

 

 
Figure 2 Subdivision 

Subdivision is when the particle is more than 

half a radius away from its neighboring wave 

particles. This means that the wave front is spreading 

too thin and needs more particles to maintain the 

smooth connection between wave particles. In this 

process the current wave particle is subdivided into 

three new wave particles using the dispersion angle of 

the current wave particle. These new wave particles 

are made in the new time step to maintain smooth 

wave fronts because they bridge the ‘gap between 

neighboring wave particles. 



 

 
Figure 3 Reflection 

Reflection, like the name implies, is the 

process of wave particles reflecting off surface 

boundaries, like walls. Reflection is handled by 

maintaining boundary conditions so wave particles do 

not extend past walls or boundaries in the scene. We 

had some trouble in our implementation, since 

checking the position at the current time did not 

exceed the boundary, but the next time step would. 

However, since the point in this case would already 

be outside, the new position calculated wouldn’t be 

correct. We fixed this by checking ahead to account 

for this.  

Utilizing these two actions for wave particles 

we can find the time each particle performs these 

actions to speed up processing time. By maintaining a 

constant queue of which particle needs to move at 

what time, we can cut down on computation for 

unnecessary wave particles that don’t need to perform 

any of the two actions. This means we don’t have to 

visit all the wave particles and can focus on only the 

ones that need to subdivide or reflect.   

Lastly, wave particles are removed once the 

amplitude has lowered past a certain threshold. This 

allows for natural waves to die out after spawning and 

maintains realism in the simulation.  

 

2.3 Wave Generation  

 
Waves are generated when wave particles are created 

at points on the surface. These points are determined 

by the interactions made to the surface as seen in 

Figure 1. Yuksel et al. provides examples of wind 

which can generate waves at random points along the 

surface. An important note is that wave particles are 

generated in groups since a single point of interaction 

on a surface is near impossible in reality. This means 

that the surface of an object colliding with the surface 

of the fluid generates points along the face of the 

surface touching the water. In other words, the 

collision between water and object spawn wave 

particles along the faces that collide. Figure 2 shows 

the method of reflection as described by Wave 

Particles [Yuksel 2007].  

For the case of wind, the surfaces interacting 

are arbitrary and can be generated at random. This 

results in differing lengths of wave fronts at random 

points on the surface of fluids for waves generated by 

the wind. Solids interacting with the surface also 

spawn wave particles, but in specific points around 

the object face colliding with the surface. These wave 

particles are then propagated through the scene to 

simulate the waves caused from the object.  

  

  
Figure 4 Wave Ring   

  



  
Figure 5 Failed Dispersion 

  

The project we made to implement surface 

interactions of fluids used the aforementioned wave 

particles only. Unfortunately we were unable to finish 

full implementation of subdivision which leads to 

discontinuity over the wave fronts simulated. Our 

model and input are closely related to the cloth input 

model for homework 2, where we define the area of 

the surface and extended the input to include the 

objects that might fall onto the surface.  

The generation of objects works and is 

randomly placed across a height specified by the input 

file. We did not have time to include collision 

detection for the objects, so spawning more than one 

may result in objects clipping into each other. When 

given a base surface and no objects, our simulation 

runs a simple wave produced by the wind. The wave 

is defined over the surface and moves in the positive 

x direction. The wave does imitate reality and 

smoothly runs and reflects over the surface and 

boundaries. We were unable to attach a video to this 

paper, but our simulation was indeed very similar to 

Yuksel et al. simulation of a confined wave. 

Subdivision was tested by spawning a ring of wave 

particles, which would be like simulating a drop into 

the surface. Since we did not have enough time to 

implement objects falling into the surface, we 

specifically defined the ring and tested for subdivision 

this way. This test clearly shows our lack of 

subdivision of wave particles and can be seen in 

Figure 3.  

 

 

4 Conclusion  
  

This project was motivated by our interests in 

simulating fluids realistically. Even though the SPH 

model [Ihmsen, 2014] was an alluring and interesting 

method, we decided to start with simple fluid surfaces 

and planned to extend this towards a full three part 

system that can include wave particles  

[O’Brien and Hodgins, 1995]. Due to time constraints 

and other projects and assignments, our time spent on 

this project was shorter than we would have liked. We 

were unable to model depth and object motion, but 

were able to simulate the waves themselves. In total 

we spent an equal amount of time working towards 

our current progress with a total of around 46 hours 

between the both of us. The results we obtained were 

very successful and implied the possibility for future 

work in extended this into a  

three part system.  

Future work could be made into extending and 

fixing the current program. In regards to the objects, 

animation can be added as well as collision detection. 

The depth of the fluid can also be added by using a 

vertex shader for subsurface coloring. There are also 

extensions that we did not implement for wave 

particles, namely subsurface objects and their 

interactions with the surface.  

Overall, this project showed us the 

possibilities we could achieve in simulating realistic 

fluids. In all fairness, we were not able to fully finish 

this project, but the potential and future definitely 

seem promising with the realistic results we obtained.  
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