
Plausible Chainmail Rendering
Kevin Mackenzie
Glenn Smith

Figure 1: Table Cloth scene Figure 2: Golden Curtain scene

ABSTRACT
We present a method to simulate interlocking-ring fabrics, com-
monly referred to as chainmail, in real-time as well as a method to
plausibly render them. These materials exhibit unique properties
that other fabrics do not adhere to and the simulation and rendering
of such properties has been little studied in the field of computer
graphics. Our work builds a practical and theoretical foundation for
the necessary properties for visually satisfying renderings as well
as a discussion on the necessary changes to achieve more physically
correct results.

1 INTRODUCTION
Chainmail is a fabric consisting of many interlocked rings. Usually
arranged in a grid-like pattern like in Figure 3, the rings connect to
form a mesh that behaves like cloth but exhibits very little stretch-
ing and can compress considerably further. For our simulation, we
wanted to focus on implementing a plausible, real-time approxi-
mation of how chainmail behaves. We used real-world examples

of chainmail, such as Figure 4, to model our formulae to the real-
world behavior we sought to imitate. The key features we planned
to accomplish were:

• Cloth-like behavior with compressing and resisting stretch-
ing

• Rings orienting to interlock correctly
• Reflective texturing on the rings
• Real-time simulation and rendering performance

2 RELATEDWORK
2.1 Mass-Spring Model
We take most of the inspiration for our work from work in simulat-
ing traditional cloth, namely Provot’s work [Provot 1995] in adding
deformation constraints to mass-spring models. Since rigid fabrics
require very small time steps to produce a stable simulation due to
the forces of high spring constants, a better way to achieve satis-
fying results for rigid cloths was necessary. Adding upper bounds
for the distance of the structural and shear springs can strech con-
strains deformation and prevented unrealistic "super-elasticity" that

Figure 3: Chainmail - Variation 6. Texture by Constantin
Malkov [CC-BY 2.0], via Filter Forge

Figure 4: Chainmail Tunic on a Mannequin. Photograph by
Housing Works Thrift Shops [CC-BY-SA 2.0], via Flickr

smaller spring constants entail. Since chainmail exhibits very rigid
behavior, Provot’s work is well-suited for our needs.

Another important issue to consider when simulating fabrics
is handling and preventing self-intersection. Provot [Provot 1997]
also did work for preventing self-collision between thin sheets and
arbitrary surfaces, including self-collision, by detecting collisions
between points in the mesh and all triangles to handle the case
where a point in the cloth is pulled through an arbitrary surface, and
between edges in the cloth and arbitrary edges to handle the case
of the edge of the cloth being pulled through the edge of another

surface even if a point does not protrude. Due the our material’s
significant thickness, this strategy is not necessary. From this point
forth, when Provot is mentioned by name, we are referring to his
work in [Provot 1995].

Bridson [Bridson et al. 2002] also did work in handling cloth self-
intersection and friction for use in animation. We take inspiration
for their method for preventing self-intersections efficiently, but do
not implement their specific strategy. Their method, which involves
computing inelastic collisions between elements of the cloth system
with each other, could be be adapted to improve the self-interaction
behavior of our model.

2.2 Current Methods
There appears to be a few different methods for handling chainmail
in current applications. One is to to use methods for simulating
normal cloth in whatever capacity the the application requires and
apply a texture to the resulting mesh. This can result in obvious
artifacts like stretching and warping of the individual rings as the
texture is interpolated across each primitive.

Another method, which can be used for non-real-time applica-
tions, is to do a rigid body simulation on each ring of the mesh,
which has all of the drawbacks of rigid body simulations, such as
unstable rest contact states. However, this does result in the most
physically accurate results at an appropriate time scale.

Figure 5: Several frames of chain falling over itself and
avoiding apparent self-intersection

3 CLOTH
First, we must define our model for the rings in the material. We
assume each ring is a perfect torus and all rings in the mesh are
of uniform size. The torus has a tube radius of a and the distance

2

from the center of the torus to the center of the tube we call the
radius c . We assume that a << c , otherwise the torus would not
have a hole in the center.

The basis for our cloth simulation is a mass-spring system. Each
mass in the cloth represents a ring in the chainmail and each
"spring" represents a connection between two rings. Instead of the
traditional structural, shear, and flexion springs, we use a simplified
model that omits the shear and flexion springs since they have
limited relevance for our material. Due to the macroscopic units
of chainmail, some of the methods used to handle the continuous
nature of cloth over a discrete mesh grid are unnecessary.

At first thought, one may think it would be suitable to have
spring forces for the structural node relationships in the mesh, but
traditional linear springs do not accurately model the relationship
between rings in the mesh since compressing the material yields
no resistance. A reasonable approximation for the springs that each
ring represents would be a piecewise function that applies zero
force unless over or under extended. Since metal rings have a small
amount of elastic deformation, this spring constant is effectively
infinite, which is not well-suited for numerical integration. Because
of this, we omit all cloth spring forces and rely fully on Provot’s
edge constraint method to keep the material together. Springs also
give the material an unnaturally bouncy appearance.

Since we omit spring forces, there is the additional problem of
over-compressing these edges. Since the material has significant
thickness, wemust ensure that it buckles instead of falling into itself
completely. While the exact nature of how close each node can get
to its neighbor depends on a variety of factors, we choose to allow
it to get as close as the thickness of the ring and we will discuss how
we visually handle this in Section 4. We make the assumption that
the cloth will not be under simultaneous compression from both
axes of the node grid, which is reasonable since the only relevant
compression force is from gravity, so this strategy is still plausible.

One drawback of omitting spring forces and exclusively using
constrained edge lengths is that we have no internal forces to op-
pose gravitational forces on each node, so, despite appearing correct,
the velocities actually become unbounded if not correctly updated.
One solution is to increment the physics as normal, but once the
positions have all been calculated, update the velocities to reflect
the constrained movement of the nodes instead of the integration
of acceleration. This method is visually indistinguishable to normal
integration. It should be noted that momentum is not conserved
with any method using Provot’s edge constraints without specially
accounting for it.

There are a few additional aspects that require some note. The
first is that the inner diameter of the rings should not be directly
used for edge constraints. Since the actual minimum distance be-
tween rings depends on their orientations, we must make an ap-
proximation. The simplest method is to constrain edge distances to
an effective inner diameter that is a percentage of the true inner
diameter, which is what our results are based on, but you may be
able to achieve marginally better results by factoring in the a in this
approximation. This allows the specified dimensions of the rings to
be true to the visual appearance and reduce the amount of overlap
in the contact regions of each ring under normal circumstances.

We avoid collision between non-adjacent rings using a simple
spring force that all rings emit on each other when under a cer-
tain distance away [Bridson et al. 2002]. Since there is no defined
surface like traditional cloth, spring forces seemed appropriate to
approximate the average effect that two patches of a cloth have
on each other. For larger meshes, a bounding-volume hierarchy
would significantly improve the performance of this step, but for
the relatively small patches (less than 30x30) we use, the naive
O(n2) approach was acceptable. This produces plausibly positioned
rings that avoid each other enough to not overlap, even if they are a
bit distant at times. Figure 6 shows the chain avoiding intersections
in the Table Cloth example where the corners cause the chain to
collapse towards itself.

Figure 6: Table Cloth scene demonstration from below, high-
lighting the repulsive forces

4 ORIENTATION
To orient the rings we used a visually plausible approach that,
while not physically accurate, looked good from a distance and was
efficient enough for real-time performance. The general strategy
was this: rotate the rings to face their neighbors, forming a sort
of sheet of rings, then swivel the rings in a pattern to create the
interlocking effect of chainmail.

Rotating the rings was done with a single matrix transformation,
constructed by finding the vectors to neighboring rings and using
them as the bases of the matrix. A visual example of this is shown in
Figure 7. For internal rings, these vectors were from one neighbor
to the opposite neighbor, and for edge rings they were just from
that ring’s center to its one neighbor. Because our ring model was
oriented along the X/Z plane, these neighbor vectors were used as
the X and Z bases for the transformation. Using their cross product

3

Figure 7: Determining x, y, and z bases for rings

as the Y basis yielded the full set of bases for the final transformation
matrix in Equation 1.

Although this method correctly connected the rings in a sheet, it
suffered from artifacts when the rings were not at perfect angles and
distances. Because the X and Z bases were based on neighboring
rings, they weren’t necessarily orthogonal and often caused the
rings to warp and stretch to fit. The solution to this was to rotate
the X and Z vectors outwards to form a 90 degree angle. This was
done with a series of cross products and averages that eventually
yielded three orthogonal basis vectors which were used in forming
the final matrix to transform the rings.

®v45 = ®x + ®z

®v135 = ®y × ®v45

®x ′ = ®v45 + ®v135

®z′ = ®x × ®y

M =


x0 y0 z0 0
x1 y1 z1 0
x2 y2 z2 0
0 0 0 1

 (1)

To add the necessary texture to the material that gives it its
distinctive weave, each ringmust be swiveled by some angle θ along
some axis ®S (the swivel axis).While there aremany physically-based
factors that affect θ and ®S , we came across a good approximation
based on a few easily calculated factors. The first is the distance
between connected rings. The second is the radius of the wire each
ring is composed of. Intuitively, ®S can be defined as the as vector
composed of the average distance between connected rings along
both direction of the grids. This has the effect of having the swivel
axis be based partially on the axis of compression. We then specify
a minimum swivel that is based on a and c such that the material
sits in a satisfying orientation under normal conditions. We can
approximate this angle by a

c , which the gives us half the angle that
the wire thickness offsets the two rings that have radius c . This
approximation only diverges significantly when a approaches c ,
which is not a reasonable condition for this material. We chose to
linearly interpolate between the upper bound (π2) and the lower

bound (ac) based on the ratio of the average distance between a
ring and its neighbors. One limitation to this strategy is that it
only allows for one weave pattern across the entire mesh, so some
drapes have artifacts when there is significant slack near the fixed
points.

5 RENDERING
To complete our description of how to make visually plausible
chainmail, we must outline how to render it in an appealing way.
This section will serve as a practical guide for how to achieve similar
results to ours.

The most fundamental component is having a well proportioned
ring model for each ring in the mesh. Since we can define a point
on a torus parametrically over two angles u, and v , it is trivial to
generate a model of arbitrary resolution at run-time. You can scale
the resolution by the size of the ring in the context of the application
to get visually appealing results without unnecessary computation.
With the methods described in 4, you can find the orientation for
each of the rings and use methods like instanced rendering if your
graphics API supports it to increase performance.

In the interest of performance, we render the rings using environ-
ment mapped reflections off a static skybox. Though we considered
using ray tracing for more accurate reflections, the runtime hit
would have been significant and negated our efforts to optimized
the simulation for real-time performance. The environment map-
ping involved a basic reflection of the camera ray off the surface
into into a cubemap texture of the skybox. While a basic reflection
shader would have sufficed, we opted to make the chainmail look
rougher by adding blur to the reflection color. Since the texture
coordinates of the reflection were on the surface of a cubemap,
we took a one-dimensional Gaussian noise algorithm and applied
it to all axes. Using a fast algorithm from [DesLauriers 2015], we
sampled 13 pixels of the cubemap per axis, and averaged them to
create a decent-looking and efficient blur effect. The result, when
combined with a customizable material color, creates a pleasing
reflective surface that can be seen in figure 8.

6 CONCLUSIONS AND FUTUREWORK
When compared to pictures of real chainmail, we found our method
to be fairly convincing. When put in isolation it actually becomes
very believable. The rings rarely intersect with their neighbors
and when they do, the patch is under compression. When under
asymmetric compression or in regions of high curvature, the pattern
becomes less defined as it should and these potential artifacts go
easily unnoticed. For dynamic scenes the intersections become
even more difficult to spot, even for configurations that have many
intersecting rings.

There are no large-scale intersections where large portions of
the cloth pulls through itself in all but the most extreme scenarios.
If the mesh is fixed at the corners and forced to support its own
weight from the bottom, it will not behave in a desirable fashion.
We found that these scenes needed to be intentionally fabricated to
fail.

One artifact that is noticeable under low tension scenarios is due
to the diagonal row pattern. Since this diagonal pattern is global to
the mesh, suspending corners of the square sheet can often look

4

Figure 8: Up-close view of the environment mapping on the
rings

odd (as seen in the top-right side of figure 2). This could be solved
by propagating orientation information (as simple as a boolean)
throughout the mesh from the fixed points, but we did not pursue
this problem.

6.1 Physically Accurate Constraints
While the goal of this paper was to produce physically plausible
results, we explored the possibility of physically-correct, constraint-
based orientation and position that explicitly prevents self inter-
section. Much of this work co-evolved with the work described in
Section 4 with the "swivel" axis. First, we need to define a more
formal relationship between the position and orientations of two
tori in the mesh. We can define a torus with a parametric function
®F over two variables u, and v and a position ®P

Fx (u,v) = (c + a × cosv)cosu + Px (2)
Fy (u,v) = (c + a × cosv)sinu + Py (3)
Fz (u,v) = a × sinv + Pz (4)

We can transform these Cartesian coordinates by two angles: θ
and ϕ, where ϕ is the angle to rotate the vertical axis around the
torus normal and θ is how much to rotate around this "swivel" axis.
Now, we can define every point on the torus with two variables
and two parameters.

FxT = (Fzsinθ + Fxcosθ)cosϕ − Fysinϕ (5)
FyT = (Fzsinθ + Fxcosθ)sinϕ + Fycosϕ (6)
FzT = Fzcosθ − Fx sinθ (7)

Each ring has a position in space and an orientation (represented
as a normal). If we transform one ring into the coordinate space of

the other and align one axis with the vector between their positions,
we can relate the two rings by a single distance measurement, and
a mutual swivel required to form contact (if two tori have (ϕ,θ) =
(0, 0) in this coordinate space). Each normal can be translated into
a swivel (ϕ,θ) that is used to aid temporal and spacial coherence,
but is not directly used in any of the equations. Using the above
transformed parametric equations (5-7), we can determine if there
is any contact or intersection. If there is none, then the two rings
already satisfy the interlocking and non-intersecting constraint, so
the next step can be skipped.

If the rings are intersecting, we must determine a mutual min-
imum swivel to mitigate the intersection. There are many solu-
tions to these parametric equations since we have three equations
(®FT 1 = ®FT 2) and six variables (u1,u2,v1,v2,θ ,ϕ) (all other variables
being constrained). Since we are only interested in the contact be-
tween the surfaces of the two tori, we could add the constraint that
the surface normals are antiparallel, which should result in a 1-fold
infinity of solutions in most cases, but the current parameters θ and
ϕ of each ring can be used to aid coherence. Future work is required
to determine the best method to achieve this, but we suspect it
will involve biasing numerical methods of solving our system of
equations in the direction of our current swivels.

Using similar strategy as Provot for preventing superelasticity,
we can define an inverse of this system: given a θ and ϕ for two
rings, we need to solve how far apart they must be to satisfy the
contact conditions. Luckily, since we have the additional constraint
that the two rings will be at the maximum distance for this θ and ϕ,
there are only two solutions. However, an analytical solution may
be difficult to come to.

This method serves to replace the Provot correction, but position,
velocity, and acceleration integration can be performed as normal.

7 CONTRIBUTIONS
Glenn wrote the base cloth simulation code and Kevin adapted
it to meet the needs of the chainmail material. Kevin wrote the
base code for rendering the scene and Glenn wrote the code for
realistic shading. Glenn worked on orienting the rings based on the
simulated mesh and both Kevin and Glenn worked on the swivel
logic. Kevin developed a theoretical model for more physically
accurate position and orientation simulation.

REFERENCES
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of

Collisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July
2002), 594–603. https://doi.org/10.1145/566654.566623

Matt DesLauriers. 2015. glsl-fast-gaussian-blur. (2015). https://github.com/Jam3/
glsl-fast-gaussian-blur

Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe
Rigid Cloth. (1995).

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated to
design garments. (1997), 177–189 pages.

5

https://doi.org/10.1145/566654.566623
https://github.com/Jam3/glsl-fast-gaussian-blur
https://github.com/Jam3/glsl-fast-gaussian-blur

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mass-Spring Model
	2.2 Current Methods

	3 Cloth
	4 Orientation
	5 Rendering
	6 Conclusions and Future Work
	6.1 Physically Accurate Constraints

	7 Contributions
	References

