
Smoothed Particle Hydrodynamics
with Position Based Dynamics

Leon Montealegre∗

Figure 1: A frame showing a wave

Abstract

In this paper, I will describe my implementation of simulating fluid
dynamics using Smoothed Particle Hydrodynamics (SPH) from the
previous work of [Müller et al. 2003] and Particle Based Dynamics
(PBD) from [Macklin and Müller 2013]. The goal is to have a quick
and stable algorithm for the use of real-time applications.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: fluid simulation, SPH, PBD

1 Introduction

1.1 SPH

Smoothed Particle Hydrodynamics (SPH) is a generalized method
of simulating different physical materials (fluids, gases, soft bodies,
and even rigid bodies) through the use of discretized, finite parti-
cles. It was originally introduced by [Gingold and Monaghan 1977]
for use in astrophysics but has recently been the target of real-time
applications for physics simulation.
SPH has many attractive features. Due to its discretization as parti-
cles, it is a very intuitive way to simulate physics since each particle
can be thought of as a small ball. Another great feature is that each
particle is mostly independent after a certain step which means that
it can be easily parallelized.

1.2 PBD

While SPH has many attractive features, the main drawback is that
it’s quite unstable. SPH relies on integration schemes to move par-
ticles from one time to the next which, by definition, introduce in-
stability and accuracy errors.
Position based dynamics is a method introduced by [Müller et al.
2007] for use in cloth and soft-body simulation. Then, [Macklin
and Müller 2013] built off of PBD and used it for fluid simulation.

∗e-mail:leonm99@gmail.com

PBD aims to get rid of explicit integration schemes and replace
them with a set of rules or ”constraints” that are satisfied using
Gauss-Seidel iteration which is a method quite similar to Provot
correction.

2 Motivation

My main motivation for choosing this topic and working on this
project was due to NVIDIA’s PhysX FleX system. FleX is
NVIDIA’s unified particle system. I initially saw their results a few
years ago and I was blown away. I became obsessed with watch-
ing fluid simulation videos and crashing waves. I was still a pretty
novice programmer at that point but I decided to try and see if I
could implement my own fluid simulation. I could not. But it is
pretty incredible to be able to look back now, after I’ve fully imple-
mented it and see how much I’ve learned and grown as a program-
mer. I never thought I’d be at the point to understand the Navier-
Stokes equation but here I am with a pretty general idea of what it
represents.

3 SPH

This section will discuss the more technical aspects and details of
SPH along with some of the mathematics used to implement it.

3.1 Idea

Since each particle is discretized, they represent an amount of vol-
ume in that fluid. From this, conservation of mass is a given which
dramatically simplifies many calculations. Each particle has dis-
cretized ”attributes” which are interpolated to evaluate anywhere
in the system. These attributes are interpolated via normalized
”smoothing kernel” functions denoted as W (x, h).

3.2 Attributes

Each particle holds a few key attributes which are used to satisfy
the underlying Navier-Stokes equation.

ρ
∂u

∂t
= −∇p+ µ∇2u+ ρg (1)

In layman’s terms, (1) is a F = ma equation. u is the velocity of
a particle, so ∂u

∂t
is the acceleration of the particle. The right hand

side of the equation is then the forces that dictate the motion of the
particle and are what need to be solved.

From this, the two primary attributes can be found, ρ and p. ρ is
the density of the particle and p is the pressure.

To evaluate an attribute, we use a weighted sum of the attributes
from the surrounding neighbors of the current particle using the
”smoothing kernel”. We want particles that are closer to us to con-
tribute more than particles that are further away from us, so the
smoothing kernel falls off as a function of distance. And since par-
ticles very far away have little to no effect on us, we define a radius
h which is a cut-off point for particles to have an effect. There-
fore, we have a set of ”neighbor” particles that we need to find to
calculate an attribute. Formally, this can be written as:

Ai =
∑
j

mj

ρj
AjW (xij , h) (2)

where xij = xi − xj and |xij | < h

mj

ρj
represents the amount of volume the particle holds, so bigger

particles have a bigger effect on the attribute.

The great thing about this formulation of attributes is that the gra-
dient and laplacian of them are trivial to compute:

∇Ai =
∑
j

mj

ρj
Aj∇W (xij , h) (3)

∇2Ai =
∑
j

mj

ρj
Aj∇2W (xij , h) (4)

3.2.1 Density

For density, Ai = ρi

⇒ ρi =
∑
j

mj

ρj
ρjW (xij , h) =

∑
j

mjW (xij , h) (5)

3.2.2 Pressure

From, the ideal gas state equation:

p = kρ (6)

where k is a gas constant that depends on the temperature. A mod-
ified version is suggested by the paper [Müller et al. 2003]

p = k(ρ− ρ0) (7)

where ρ0 is the rest density of the particle.

3.3 Forces

Since the left-hand-side of the Navier-Stokes equation (1) is the
acceleration of the particle, the right-hand-side describes the forces.

3.3.1 Pressure

The pressure term is described as −∇p which yields

fpressurei = −∇p(xi) = −
∑
j

mj

ρj
pj∇W (xij , h) (8)

This term, however, is not symmetric which is a problem for numer-
ical accuracy and stability. So, with some hand-waving the force
can be described as:

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (xij , h) (9)

Which is the average of the two pressures.

3.3.2 Viscosity

The viscosity term is described as µ∇2u which also yields asym-
metric forces

fviscosityi = µ∇2u(xi) = µ
∑
j

mj

ρj
uj∇2W (xij , h) (10)

Which can be symmetrized as follows:

fviscosityi = µ
∑
j

mj
uj − ui
ρj

∇2W (xij , h) (11)

3.3.3 External

The dominating external force is gravity, which is simply modeled
by

fgravityi = ρig (12)

where g is the acceleration due to gravity.
For collisions, I implemented basic collision forces with planes de-
fined as ”Walls”. Each wall has a position, xi, and normal ni and
the force on a particle i from wall j is

fwallsi =
∑
j

(Knj(xji · nj) +Dnj(ui · nj)) (13)

whereK is a sort of ”spring constant” for the wall that dictates how
much it pushes on the particle and D is a damping coefficient that
describes how much energy the particle will lose (D = −1 is a
perfectly elastic collision)

3.3.4 Other

There are some other, more complex forces that are described
by [Müller et al. 2003] such as the surface tension force and some
other stabilizing forces like ”vorticity”. I did implement the sur-
face tension force but the math behind it is beyond the scope of this
paper.

fsurface = −σ∇2cs
n

|n| (14)

where σ is a surface tension constant, n = ∇cs and is the surface
normal pointing into the fluid and

cs(x) =
∑
j

mj
1

ρj
W (xij , h) (15)

4 PBD

This section will briefly discuss the more technical aspects and de-
tails of PBD, skipping over the more complicated mathematics.

4.1 Idea

The general idea of PBD is to replace explicit integration schemes
through the use of ”constraints”. I found it easiest to understand
constraints through the simplest example, distance constraints.

4.2 Constraints

A constraint is denoted as Ci(p1, . . . , pn) where pi, . . . , pn are the
positions of the particles that this constraint applies to. The con-
straint is also setup to be satisfied when Ci = 0.

4.2.1 Distance Constraint

Figure 2: Distance Constraint

For a distance constraint, the constraint is simply as follows:

C(pi, pj) = |pi − pj | − d0 (16)

Where d0 is a ”rest distance”. This constraint is satisfied when
|pi − pj | = d0, in other terms - when the distance between particle
i and j is d0.
This is a more formal form of Provot correction.
The constraint solver then aims to satisfy all of these constraints.
So for cloth, there would be a set of constraints for each spring
(structural, shear, and flexion) and the solver would iterate through
each and solve each one individually.

To solve the constraint, we attempt to find a ∆x such that

C(p+ ∆p) = 0 (17)

The math is a bit messy, but the general idea is to do a Taylor se-
ries expansion and use Newton’s method to approximate a solution.
This leads to the following

∆pi =
1

ρ0

∑
j

(λi + λj)∇W (pij , h) (18)

where

λi = − Ci(p1, . . . , pn)∑
k |∇pkCi|2 + ε

(19)

where ε is a ”relaxation constant” which dictates how forceful the
constraint solver is.

5 Algorithm

In this section I will outline the algorithm I use for the fluid simu-
lation along with explanations of important details.

Algorithm 1: Simulation Loop

foreach particle i do
find neighbors Ni
calculate ρ, p

end
foreach particle i do

calculate fpressure, fviscosity, fsurface, fexternal
end
foreach particle i do

apply forces vi = vi + ∆tftotal
predict position x∗i = xi + ∆tvi

end
while iter < solverIterations do

foreach particle i do
calculate λi

end
foreach particle i do

calculate ∆pi
end
foreach particle i do

update predicted position x∗i = x∗i + ∆pi
end

end
foreach particle i do

update velocity vi = 1
∆t

(x∗i − xi)
update position xi = x∗i

end

5.1 Finding Neighbors

Finding neighbors is the most computationally expensive part of
SPH and PBD. I began with a general, brute-force O(n2) approach
of looping through each other particle in the scene and performing
a distance test. This performs decently enough for particles
amounts under 400 and so I stuck with it for a majority of my
debugging. Eventually, as performance costs rose and I began to
make the move from 2D to 3D, this approach was not going to cut it.

There are many ways of going about this efficiently, but the most
obvious approach is some sort of spatial data structure. I chose
to use an octree due to its simplicity to implement and fairly de-
cent performance. There are definitely faster methods of neigh-
bor searching such as a radix sort or counting sort which partition
neighbors into a flattened array for easy GPU look-up.

6 Rendering

For my 2D scenarios, rendering is trivially done through
JavaScript’s Canvas API and each particle is drawn as a circle.

For the 3D scenarios, rendering is done with OpenGL and GLFW.
Each particle is drawn as a 3D sphere with basic diffuse shading.
Initially I had a render call for each particle but then I implemented
instance rendering so all the particles are drawn in a single render
call.

There are definitely much prettier methods of rendering such as El-
lipsoid Splatting but I did not have the time to implement them.

7 Future Work + Reflection

There are definitely many potential extensions for this simulator.
The most exciting is porting the simulation steps onto the GPU
using compute shaders. This has been done in most of the papers I
have used and they support millions of particles in real time which
is incredible.
Due to my use of PBD, including other types of materials such as
rigid bodies, soft bodies, and even gases would be a fairly trivial
extension of the existing code.
It would also be very interesting to compare the running times of
different scenes with different material properties.

Overall, this project took well over 80 hours (maybe even 100). I
did everything and honestly it was pretty fun.

8 Known Bugs

PBD’s main goal is to eliminate compressibility in the fluid and
enforce the rest density. Most of my results are pretty bouncy as
many people have pointed out. This is partly due to the lack of
clarity and detail on a majority of my resources. There are a few
places where it’s ambiguous as to whether or not a particle should
include itself as a neighbor and changing that seems to make the
simulation a lot less compressible but a lot less stable as well. I
believe if I were able to simulate tens of thousands of particles this
problem would resolve but the maximum number I was able to
reach was around 2500.

And while it’s a bit too bouncy, it is incredibly stable and very rarely
blows up which I personally believe is more important.

9 Kernel Functions and Constant Values

9.1 Kernels

There are different kernel functions for different forces. The
kernels are chosen fairly arbitrarily but must be normalized (i.e.∫∞

0
W (x, h)dx = 1) and must be = 0 at |x| = h.

9.1.1 Wpoly6

Used for most instances of the kernel function.

Wpoly6(x, h) =
315

64πh9

{
(h2 − |x|2)3 0 ≤ |x| ≤ h
0 otherwise

(20)

∇Wpoly6(x, h) =
−945

32πh9
x

{
(h2 − |x|2)2 0 ≤ |x| ≤ h
0 otherwise

(21)

∇2Wpoly6(x, h) =
−45

πh6

{
(h2 − |x|2)(3h2 − 7|x|2) 0 ≤ |x| ≤ h
0 otherwise

(22)

9.1.2 Wspiky

Used only as a gradient for the calculation of the force for the pres-
sure term.

∇Wspiky(x, h) =
−45

πh6

{
(h−|r|)2
|r| 0 ≤ |x| ≤ h

0 otherwise
(23)

9.1.3 Wviscosity

Used only as a laplacian for the calculation of the force for the
viscosity term.

∇2Wviscosity(x, h) =
45

πh6
x

{
(h− |r|) 0 ≤ |x| ≤ h
0 otherwise

(24)

9.2 Constants

Here’s a list of all the constants and values for each that I use in a
majority of my demos.

h = 0.0457
∆t = 0.01
solverIterations = 5
ε = 5000
σ = 0.0728
k = 3
ρ0 = 998.29
µ = 10.5
m = 0.02

with 3 walls:
x0 = (0, 0), n0 = (1, 0)
x1 = (0.8, 0), n1 = (−1, 0)
x2 = (0, 0), n2 = (0, 1)

References

COROS, S. Particle-based fluids. http://www.cs.cmu.edu/
˜scoros/cs15467-s16/lectures/11-fluids2.
pdf.

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed parti-
cle hydrodynamics. Monthly Notices of the Royal Astronomical
Society.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
SIGGRAPH.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T. Y.
2014. Unified particle physics for real-time applications. SIG-
GRAPH.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. Vis. Comun. Image
Represent..

http://www.cs.cmu.edu/~scoros/cs15467-s16/lectures/11-fluids2.pdf
http://www.cs.cmu.edu/~scoros/cs15467-s16/lectures/11-fluids2.pdf
http://www.cs.cmu.edu/~scoros/cs15467-s16/lectures/11-fluids2.pdf

Figure 3: Screen shot of a demo showing a wave Figure 4: Screen shot of a demo showing a spout of water
hitting a pool of water

Figure 5: Screen shots of a demo showing a droplet of water splashing into a pool

Figure 6: Screen shots of a demo showing how particles of different density naturally separate, ρred ≈ 0.5ρblue

Figure 7: Screen shots of a 3D demo

