
Raytracing Through Portals

Max Sichel Sol Toder

Figure 1:​ A view of rays passing through portals, creating shadows and showing other parts of the scene.

1. ABSTRACT

In this paper, we describe a method for rendering a
raytraced image that contains portal planes. Every
portal planes is connected to another portal plane in
such a way that the two portal planes may be said to
occupy the same area, despite being in two different
locations. In other words, any ray that strikes a portal
plane will be instantly transformed so that it is exiting
the related portal plane at the same relative position
and relative angle. This allows viewing the area
behind one portal plane through a different portal
plane, as well as other related effects.

1.1. Introduction

Simulating portals with raytracing is in many ways
simpler than simulating them with more standard
rasterized graphics. Rather than requiring multiple
render passes, alternate cameras, and creative clipping
planes, raytracing through portals is a conceptually
simple process. We are already tracing rays through
space and seeing where they hit; if that hit happens to
be a portal plane, create a new ray starting at the

equivalent point and with the equivalent angle on the
related plane, and continue the trace from there.

Despite this conceptual simplicity, there are still
several challenges involved. While a simple
modification of the ray casting function will suffice for
simple images, lighting and global illumination will
need to be modified for fully correct results, and care
must be taken to avoid unbounded runtimes or
memory usage. Light passing through a portal or set of
portals can enter an infinite loop, and the number of
angles which must be traced for correct lighting results
can grow exponentially, or even become infinite.
Boundaries must be set, and approximations must be
made, as in any area of rendering.

1.2. Related Work

Portals are not a common object in either real-time or
pre-rendered graphics, being an imaginary concept
with no real life analogue currently existing. Naturally
research into rendering portals is somewhat sparse.
Young and Stolarsky[1] provide a method for ray
tracing through viewing portals in a scene. Their

portals are all circular and they do not take global
illumination into account. Subileau et al. [2] transport
photons through portals in order to edit the
illumination of a room, however their methods are
oriented more towards editing lighting in a scene for
artistic effect.

2. APPROACH

2.1. Portal Definition

The general idea of portals is to connect two disjoint
points in space as though they were right next to each
other. Our portals are sets of two planar portal sides.
Rays entering one of the portal sides will be
transported out of the other. Each portal side is
represented as an affine transformation of a unit
square. As Subileau et al. point out, it is important that
these transformations correspond to invertible
matrices[2]. In our case these are stored as four by
four homogeneous matrices in order to simplify the
math slightly. In practice our portal sides also keep a
reference to both their parent portal and their
corresponding portal side for convenience.

2.2. Ray Portal Intersection

The implicit equation for a plane is

p)N · (− C = 0

where is the plane’s unit normal vector, is a N C
point on the plane (the portal’s centroid, in our case),
and is the candidate point. The explicit equation for p
a ray is

 Dp = R0 + t

where is the ray’s origin, is the ray’s unit R0 D
direction, and is a non-negative real number t
representing the distance of the point from the ray’s
origin. We can combine these to produce

C) / (N)t = N · (− R0 · D

which calculates the intersection between a ray and the
portal side, or more specifically an infinite plane
overlapping the finite portal side. A portal side’s

normal and centroid may be easily calculated by
transforming the unit forward direction vector,

, and the identity position vector,, , 1, < 0 0 − 0 >
, through the side’s transformation, 0, 0, 1 < 0 >

matrix respectively. If is zero, the ray is parallel N · D
to the plane and there is no intersection. If is less t
than zero, the intersection is behind the ray’s origin
and there is no intersection. Finally, we transform the
hit point by the side’s inverse matrix, and then check
whether it is within the original unit square. If it is not,
there is no intersection. Otherwise, we have found the
intersection point.

At this point, transferring the ray through the portal is
quite simple. We transform the hit position and ray
direction by the portal side’s inverse transformation
matrix, placing them in the portal’s local space. We
then transform them by the opposite side’s
transformation matrix, returning them to world space
as an equivalent position and direction relative to the
opposite portal.

2.3. Ray Tracing

Our method was implemented on top of an existing
Whitted style ray tracer[3]. Consequently it resembles
such ray tracers very closely. In fact, rays that do not
interact with portals are traced out exactly as such a
ray tracer normally would with the exception of added
global illumination.

When a cast ray does hit a portal a new ray is cast
through the portal and the hit data or color of the new
cast is returned as though it were the original ray
cast[1]. If the new ray hits a portal, then the process is
repeated until either a surface is intersected or the
maximum portal recursion depth is exceeded. The
portal recursion depth exists to prevent the ray tracer
from overflowing the stack or running out of memory.
At the maximum recursion depth, portals are ignored
so rays pass through portals as if the portal was not
there. This can lead to some noticeable artifacts when
portals should be visible through other portals and the
portal recursion depths, as seen in ​Figure 2​.

2.4. Direct Lighting

Direct lighting (​Figure 6​) is traditionally calculated by
casting a ray towards a light. If the ray hits the light,
the energy of the light is divided by the square of the
distance otherwise it is taken to be zero[3]. With
portals in the scene, it is possible that a light might be
visible through a portal. Thus, we need to cast rays
through portals as well. We use Monte Carlo methods
to calculate the visibility of the light.

For each light, we cast a fixed number of rays to each
light directly and through each portal side. The exact
number is specified as an argument to the program.
The first raycast always goes to the centroid of the
light face. All subsequent rays are cast towards a
randomly selected point on the light face. If a cast ray
hits the light, its energy is divided by the total traveled
distance squared and added to the total energy of the
pixel.

Casting to lights through portals involves three steps.
First the direction of the light is determined by
transforming the light’s position through the portal.
Then, the original ray is cast towards the portal side to
make sure it hits the portal and doesn’t hit anything
else first. Finally, the ray through the portal is checked
to make sure it hits the light. If any of these conditions
is not met, the ray is ignored.

2.5. Global Illumination

Global illumination (​Figure 7​) is calculated in our
rendering engine using photon mapping first proposed
by Jensen[4]. First photons are cast from the lights into
the scene. Their positions, energies, and incident
directions are recorded in a spatial map. Then the
photons are reflected back into the scene again
iteratively until they either miss the scene entirely or
their energy is depleted. The map in which the photons
are stored is very often a ​k​-d tree[5] in order to
accelerate the gathering process. When photons hit
portal sides, they are transported through to the
opposite side. The implementation is similar to the
backwards ray tracing used for rendering, except the
information from the ray coming out of the portal is
used instead of the information from the ray being shot
into the portal.

Gathering photons is a bit more difficult. Subileau et
al. effectively ignore the problem by only using portals
for casting photons[2]. Our implementation collects
photons through portals one iteration deep, but stops
there. To gather photons we first guess a sized sphere
to gather photons from. If we don’t collect enough
photons, we double the size of our guess. To collect
through portals, we first transform our point through
each portal side and check if the portal falls within the
test sphere. If not, it is ignored. For all other portals,
we test photons for two conditions. First we test the
incident direction and the surface normal for I N

in order to ignore photons from otherI · N < 0
surfaces of thin objects. We also make sure that the
line segment from the transformed point to the photon
intersects the portal side’s partner to prevent gathering
photons on the wrong side of the portal.

3. CHALLENGES

3.1. Illumination Recursion

Getting illumination to pass through a single portal is
relatively simple. When attempting to cast to the light
source, perform an additional cast attempt through
each portal side in the scene. This allows a portal to
add light to an otherwise shadowed area, producing
the expected result. However, for full correctness, light
should be allowed to pass through any number of
portals. This exhibits potentially unbounded behavior,
as passing through a portal does not remove it from the
list of candidates. It is entirely possible for an
illumination ray to pass through the same portal
multiple times on its way to a light source. This means
that even if we cap the recursion at some maximum
depth, the growth rate is exponential rather than linear.

For this paper we have elected to cap lighting
recursion at a single portal passthrough. Implementing
full recursive illumination would increase render times
and memory usage significantly, and the improvement
would be minimal in most cases considering lighting
falloff with distance and the diminishing area of each
recursion. We elected to cap photon gathering
recursion depth to one for the same reasons.

4. RESULTS

We believe that our method of rendering portals works
well and produces effective results. Objects can be
viewed through portals. Objects can be viewed
through multiple portals. Direct lighting, indirect
lighting, and caustics can pass through portals to
illuminate distant surfaces. Performance is decent;
when direct or no lighting is used, renders with a
maximum recursion depth of 100 take not much longer
than renders with a maximum recursion depth of 1,
largely due to the diminishing area with each
recursion.

4.1. Known Limitations

For the reasons mentioned above, our implementation
caps illumination recursion at a single level of portal
passthrough.

5. CONCLUSION

5.1. Division of Work

Sol provided most of the core code, such as loading
portals, storing portals, linking portals, accessing
portals, intersecting with portals, and transforming
position and direction vectors through portals. He also
created most of the scenes used for testing and in this
paper.

Max provided the actual implementation of raytracing
through portals, adding portal recasting to the
raycasting function and extending it to support
returning the portal struck, if any. He extended direct
lighting to take portals into account and added portal
support to the raytracer’s photon mapping engine,
allowing photons to pass through portals to create new
caustic effects.

5.2. Room for Improvement

While our current implementation caps illumination
recursion to a single level for reasons of performance,
a future implementation could implement it fully for
complete realism. Alternatively, using photon
mapping or a similar forward raytracing method for
direct illumination would simplify the code and

potentially reduce memory consumption. Using
photon splatting as opposed to photon gathering could
potentially improve performance as photon gathering
is the current bottleneck of our rendering engine.

6. REFERENCES

[1] Young, C. and Stolarsky, I. ​2008. Ray Tracing
through Viewing Portals. ​RPI ACG class, Spring 2008​.

[2] Subileau, T., Mellado, N., Vanderhaeghe, D., and
Paulin, M. ​2015. Light Transport Editing with Ray
Portals. ​Computer Graphics International 2015​.

[3] Whitted, T. ​2005. An improved illumination model
for shaded display. ​ACM SIGGRAPH 2005​.

[4] Jensen, H.W. ​1996. Global Illumination using
Photon Maps. ​Eurographics Rendering Techniques
’96​, 21–30.

[5] Bentley, J.L. ​1975. Multidimensional binary search
trees used for associative searching. ​Communications
of the ACM18​, 9, 509–517.

Figure 2: A view of two linked portal planes facing each other, with different maximum recursion depths. From left
to right, they are 0, 1, 2, 3, 5, 10, and 100.

Figure 3: A display of how rays pass through portals. A scene is seen in preview mode on the left, with a ray shown
being emitted from the camera, bouncing off the reflective sphere, and being transferred through a portal. The
resulting image can then be seen on the right. Note that the struck point on the sphere is displaying a view through
the portal.

Figure 4: Differently sized portals. The scene
contains a red sphere and two linked portal sides, one
square and one rectangular. The images seen through
the portal are noticeably distorted.

Figure 5: An “invisibility cloak.” The scene contains
a red sphere and a cube made up of six portal sides,
linked so that rays entering the top exit the bottom
and so on.

Figure 6: The same scene with a ray tree view(left), rendered with hard shadows(center), and rendered with soft
shadows(right). Note the light ray passing through the portal to the point on the floor behind the mirror.

Figure 7: Photon mapping through portals. Note the portal capturing photons inside the ring, the hole in the caustic
it creates, and the new caustic outside the ring.

