
Improvements to Distributed Ray Tracing Via Binned Batches
Shane Boles

Figure 1: A test scene rendered within 19 minutes, presenting complex refraction and a high-gloss reflector.

ABSTRACT
In this paperwe present the time-based limitations of single-threaded
ray tracing systems, the performance issues faced by ray tracing in
general, and one method of parallel programming to eliminate pro-
hibitively high run times and generate more graphically interesting
scenes.

1 INTRODUCTION
1.1 Ray Tracing
The struggle to reduce run time in graphics could be said to be one
of the key reasons a researcher would choose to focus on the field.
And even if onewere to have no interest whatsoever in investigating
methods to reduce run time, the benefits are immediately apparent:
less time spent waiting. This saved time compounds upon itself in
an iterative environment, giving a superlinear growth of produc-
tivity. Alternatively, this saved time is time that may be spent to
further refine the result at no additional cost. Sometimes the correct
outcome to choose is obvious, or perhaps even necessary.

Indeed, ray tracing is a great example of one such problem that
has no answer, or at least has yet to be determined. As implemented
in [Whitted 1980], the ray tracing algorithm consists of the concep-
tually simple idea that if light was able to bounce through a scene
and enter the eye, one may cast a ray against the path of the light to
sample where it came from. By treating each pixel a light receptor
of the eye we can sample over the entire visible scene. Further-
more, we can use this algorithm recursively on perfect mirrors and

perfect refracting objects as well, by simply doing the necessary
mirroring/angling and re-firing the trace; thus we can sum the light
at any visible point, provided we can determine which point the
trace intersects first, or at all.

Due to the "perfect" nature of the trace, however, phenomena
arising from imperfections could not be simulated. With Cook
et al.’s contribution on the topic from [Cook et al. 1984] and we
gained distributed ray tracing. With this algorithm, as the name
suggests, traces of rays are distributed over space and/or time. The
result of this is that we can apply our ray tracing algorithm to the
same origin spot in space, vary the trajectory of the ray each time,
and take the average of all of these. Thus we can simulate imperfect
reflectors. Similarly, we can vary the ray across a simulated lens to
emulate depth of field blur, vary a light-checking trace’s direction
to various points the light to sample the shadow’s penumbra, and
even reduce aliasing by varying the starting position of the ray at
the sub-pixel level.

However, there is still the fundamental part of tracing a ray;
the ray must be compared with geometry to see if, and where,
and with what it intersects. And this is not free. So if you cast
multiple rays per pixel, which cast multiple rays over the radius of
a lens, which cast multiple rays from an imperfect reflector, which
sample across a light’s surface for a penumbra, you end up with an
astronomical number multiplied by a non-zero number, which is
still astronomical even if the individual cost is minuscule.



Boles

1.2 Parallelism
Of course, such a bleak outlook discounts the various means and
circumstances at the disposal of a contemporary implementation.
For example, a spatial data structure such as an octree may vastly
cut down on the effective number of intersection tests to make
for each ray. And as an implicitly available alternative, superior or
more specialized can be employed to reduce the time taken for a
given number of computations. But in between hardware revisions,
and in spite of rigid data structures that cannot be cooperatively
treed, it is still possible divide and conquer with parallelism and
more of the same hardware.

Ray tracing is what can be described as an embarrassingly parallel
task, a task that is readily done in parallel with minimal concern
for the pitfalls of parallelism. While ray intersections are being
computed, geometry data structures are not altered. And each ray
intersection leaves no data behind to experience race conditions
with other rays originating from a different pixel landing on the
same spot since the algorithm is recursive. But that does not make
parallelism a "set it and forget it" solution, as it is still requires a
solution to coordinate and manage the process safely.

2 PAST WORK
With such good theoretical compatibility between parallelism and
ray tracing, it should not be surprising that much research into
their combination is available. As an example, in [Reinhard and
Jansen 1997], the nuances of division of labor in parallel ray tracing
is explored, thus a distinction is made: data parallel ray tracing,
where scene data is distributed across a data structure that the pro-
cessors are also distributed over, allowing the algorithm to process
a very large scene efficiently in regards to space at the expense of
imbalanced load across the processors; demand driven ray tracing,
where coherent rays are bundled together and prioritized by the
processor originating these bundles, allowing intersection testing
to be optimized and then cached for speed. Demand driven ray
tracing scales much better, but necessarily requires data copying
and communication of data across boundaries. A hybrid form can
be used where the data parallel system is capable of performing
the demand driven work, improving scaling compared to the very
poorly-scaling data driven version, but plateaus when the proces-
sors are numerous enough to deplete the demand driven work at a
faster rate.

Furthermore, in [Parker et al. 1999], Parker et al. describe in
detail a ray tracer that can operate in either a synchronous mode,
which behaves like a typical ray tracer and only updates the screen
when all the pixels are traced, or an asynchronous mode where
the screen is updated at fixed intervals with a static distribution of
pixels to processor and the program simply reads from the buffer.
The ray tracer in synchronous mode is described as processors
receiving groups of rays sized to match the architecture, which are
placed in a queue of descending size to balance reduction in syn-
chronization overhead and efficiency losses from poor distribution
of work. Accordingly, this may be classified as a demand based ray
tracer.

Given the size of the data structures handled in homework 3, we
determined a demand based ray tracer would not be constrained
by memory limitations, even in the theoretical worst case where

every processor had an entire copy of every data structure to itself.
More specifically, if every Pixel object was copied to every process,
since Pixels are compound POD types consisting of five Vec3fs
which are each implemented as an array of three doubles, with
the test machine’s 8 bytes per double, then a 1920x1080 window
would weigh approximately 250 megabytes per process. Given the
specifications of the test system, consisting of a 12 physical, 24
virtual-core Ryzen 5900X with 32 GB of RAM, at design time this
was considered an acceptable cost. In section HNGNGHL, we will
discuss the differences in what we expected to result from the
implementation compared with the actual result.

3 SYSTEM IMPLEMENTATION
First, in order to understand how the parallelism was implemented
in the code, a brief overview of how the original homework 3, will
follow in section 3.1. In sections 3.2 And 3.3, we will discuss the
two different implementations of a demand demand based parallel
ray tracer we implemented.

3.1 Original Homework 3
The key portions of homework 3 for this implementation are as
follows: when the key to trigger the ray tracing animation to start
or restart is pressed, the pixel buffers for both render buffers are
cleared, along with the refinement level and the coordinate to pro-
cessed for that refinement level. At a point in the near future, the
looping Render function calls Animate, which calls DrawPixel up to
100 times, or until it returns false which occurs when it has refined
every true pixel on its display. At each call, the RayTraceDrawPixel
function will handle row rollover, column, and refinement level
rollover for the refinement coordinates, then does a trace for the
pixel’s color, which is pushed to the currently active flip queue.
Once either RayTraceDrawPixel returns 0 or 100 iterations pass,
control flows back up out of Animate to the calling openGLRen-
derer, which calls allows the window to be drawn to 100 pixels at
at time.

3.2 Mulithreaded Shadows
The first segment of the programwe attempted to make parallel was
calculating each light’s contribution to a given traced point. That is
to say that for each light in the scene beyond the first, a new thread
will be spawned during the trace for the purposes of computing
the amount of light contributed to an intersect point from that
light. This was implemented using std::async and std:future. The
rationale behind this was to make it possible to detect any issues in
implementation before we had an expectation of what failure from
algorithm would cause.

Within each call to RayTraceDrawPixel, in the shadows mode, a
vector of std::futures are instantiated with calls

4 FUTUREWORK
There are a number of immediate low-hanging fruit one could
finish with more time. For example, implementing SNell’s equa-
tions. In addition, some time to get familiar with the PLL runtime
to maintain more control over the parallel_for_each loop would
undoubtedly prove useful. Perhaps add a layer of indirection over
how the MPPU argument affects the Pixels vector size, such as a



Improvements to Distributed Ray Tracing Via Binned Batches

scale factor calulated through the average time/pixel for the last K
pixels or somesuch.

REFERENCES
Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing.

SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 137–145. https://doi.org/10.1145/
964965.808590

Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and
Charles Hansen. 1999. Interactive Ray Tracing. In Proceedings of the 1999 Sym-
posium on Interactive 3D Graphics (Atlanta, Georgia, USA) (I3D ’99). Association
for Computing Machinery, New York, NY, USA, 119–126. https://doi.org/10.1145/
300523.300537

Erik Reinhard and Frederik W. Jansen. 1997. Rendering large scenes using parallel
ray tracing. Parallel Comput. 23, 7 (1997), 873–885. https://doi.org/10.1016/S0167-
8191(97)00031-8 Parallel graphics and visualisation.

Turner Whitted. 1980. An Improved Illumination Model for Shaded Display. Commun.
ACM 23, 6 (June 1980), 343–349. https://doi.org/10.1145/358876.358882

https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/300523.300537
https://doi.org/10.1145/300523.300537
https://doi.org/10.1016/S0167-8191(97)00031-8
https://doi.org/10.1016/S0167-8191(97)00031-8
https://doi.org/10.1145/358876.358882

	Abstract
	1 Introduction
	1.1 Ray Tracing
	1.2 Parallelism

	2 Past Work
	3 System Implementation
	3.1 Original Homework 3
	3.2 Mulithreaded Shadows

	4 Future Work
	References

