
Real-time 3D Sand Simulation

By Jon Castro and Samuel Chernick

1 - ABSTRACT

In game production, game engines are typically
used to simulate two dimensional and three
dimensional environments. These game engines
allow specific objects to be affected by physical
properties such as gravity, while other objects
are simply drawn to the screen. Particle engines
are a special type of game engine that apply
physics to all objects drawn on the screen. This
allows for highly interactable and malleable
environments. In this paper we will discuss
implementation and evaluation of two
dimensional and three dimensional particle
engines.

2 - INTRODUCTION

Falling sand is a genre of video game that uses
a 2D particle engine. Falling sand games allow
users to place various types of sand particles
that can interact with each other in unique ways.
This can lead to emergent behaviours and
complex interactions between the sand particles.
[1] Typically in these games players have no
objective. A player can simply place sand
particles to observe their behaviour or make
sculptures or other art out of sand.

In 2019, a new type of sand game was released.
Noita is a rpg game that runs in a 2D particle
engine. This game innovates on the sandbox
style gameplay of typical falling sand games by
adding a controllable character. In addition to
this, the particle engine has been expanded to
allow for rigidbodies, animations, and a variety
of other gameplay functions. [2]

Noita showed that a 2D particle engine could be
run in real-time to create more complex games.
In this paper we discuss the possibility of adding
a third dimension to a particle engine. Adding a
third dimension can exponentially increase the
computational load, so it is possible that a 3D
particle engine is not yet computationally viable.

3 - RELATED WORK

Despite his focus on realism, Sims details a
useful method for storing particle data,
animating particles, and using parallel
computing with particles.[4] Sims explains that
particles can be rendered simply by storing a
position and color, and optionally a radius and
opacity. From this particles can be drawn either
as stationary points, or as animated particles by
using another position as a tail to render a line.
He also describes the proper order to update
and render particles.

In his Game Developers’ Conference talk, Purho
shows his method for implementing a 2D particle
engine. He explains the basic particle update
behaviour and some common problems when
implementing a particle engine. He also goes
into acceleration structures and techniques for
increasing the performance of a two dimensional
game inside his engine.

4 - IMPLEMENTATION

The implementation of the project can be split
into two parts. The 2D implementation and the
3D implementation. The 2D implementation is
the standard sand algorithm described by Petri
Purho. The 3D implementation is an extended
version of Purho's implementation that adds an
additional dimension as well as an integration
with OpenGL.

4.1 - 2D Implementation

Initially, two classes needed to be created for the
simulation. One class, the particle class, stores
information about the individual particles. The
other class, the particle buffer class, stores,
manages, and renders all particles that have
been spawned.



The particle class stored data for each pixel, or
particle, that was drawn on the screen. Most
commonly, position and color are used to
determine where to draw and what to draw. This
class is also structured to allow polymorphism.
This lets us quickly create different particle types
that all have the same base functionality. Each
particle type can have its own update function
that changes the behaviour each frame. The
generic update function for a standard sand
particle has the particle move down if possible,
and if not, it moves down and left. If it can’t
move down and left, it tries to move down and
right. If that too is blocked, the particle does
nothing.

The particle buffer class is more of a
management tool that stores all the particles.
The buffer is stored as a 2D array of particles,
where empty particles are used to represent
blank spaces. When calling a function like
render or update, the buffer checks each
particle, including the empty ones. One issue
with this approach is the performance. A much
faster method is to use a particle vector that only
stores active particles. This was our original
implementation, but this may cause issues when
updating large amounts of particles with varied
behaviours. It is safer to hold a buffer and check
from the bottom row to the top row. This
prevents particles from potentially not moving
when they should be allowed to.

4.2 - 3D implementation

For the 3D extension of the particle class, the
same overall idea from the 2D version was kept
while changing the buffer to a three dimensional
array, adding a z-axis. The other main change
was the logic of the particles as they fell. Rather
than just going down, left, or right; forwards,
backwards, and diagonally are now options to
take. This didn’t have any noticeable impact on
individual particle performance since it’s just
more cases to check, but the addition of another
axis caused the buffer to be exponentially larger.
The growth in buffer size also caused a
significant decrease in performance. This is due
to the program checking every space in the

buffer to determine if there is a particle there and
if it can move. Something like a buffer with a
large z axis could significantly slow down the
program despite most of the cells being empty.

4.3 - Rendering

Initially, we decided to use the Viper engine to
render the particles in real time. However we
had to pivot away from that engine as it ended
up being far more cumbersome than what was
needed. It had a considerable slow down when
many objects needed to be rendered, effectively
capping how efficient we could be. We then
transitioned to an OpenGL renderer to complete
the rest of the project. The renderer works by
keeping a float pointer pointing to an array.
These floats could be broken down into
groupings of eight and represented the position
and color of the particle being rendered as
vectors of size four. The first four floats
represented a particle’s x, y, and z values and 1
while the second four floats represented the
RGB and alpha values of the particle. After the
particles in the particle buffer were updated in a
frame, the positional information of each particle
would be entered into the point data array so
that when the renderer was called, it would
render each particle as a point in space.

4.4 - Parallelization

To further increase the simulation speed we
parallelized functions in the particle buffer. Most
functions that involve looping over the particles
in the buffer can be done in a massively parallel
fashion. Although a large number of threads can
be used, it may not actually provide a massive
increase in performance. According to Amdahl’s
law, there will come a point where adding
processors and threads will cease to increase
the speed of a program. This is because a
program needs to be specifically optimized for
parallel usage in order to receive significant
speedup from parallelization. [3]



5 - RESULTS

Fig. 1: A 20 by 20 buffer of sand. Particles are
spawning in at the top of the screen and flowing
downward each iteration.

Initially, we rendered two dimensional ASCII
representations of the particle buffer. This was
done to test the known implementation
explained by Purho. Once we knew the systems
were functional we could simply expand the
particle to the third dimension.

Fig. 2: initial rendering with incorrect position
corrections.

Fig. 3: Functional render of particles in real
time. The 3x3 platform is a type of particle that
doesn’t move.

After successfully testing our algorithm in an
ASCII representation and getting good results,
we moved on to 3d rendering in OpenGL.
Initially, we encountered lots of issues with sizing
and display since the rendering system we used
worked on a zero to one position scale, while
our particle buffer worked on an integer scale.
The size of the particle was also an issue,
because, depending on how many particles we
were using, they would end up being rendered
with space in between them or inside each
other. We also found that the 3d nature meant
that a lack of outlines and shadows made it
difficult to see what was happening at times.
Eventually we decided to have a small amount
of space between particles to allow for a more
understandable visual. We also found that a
lack of randomization for when particles
determined where they would move led to very
repetitive looking results which can be seen in
Fig. 3 with the single constant stream of
particles in the center.

6 - ANALYSIS

Parallelization tests were run on the two
dimensional version of the particle simulation.
After parallelizing the particle buffer functions, a



simple timer was used to determine how many
seconds the simulation took to run sixty
iterations. The simulation was run on a windows
computer with an i7-7700HQ CPU and a GTX
1050 GPU.

Fig. 4: The time to run (seconds) 60 iterations
with 1 million particles in two dimensions with no
threading.

Fig. 5: The time to run (seconds) 60 iterations
with 1 million particles in two dimensions with
four threads.

Using standard library C++ threads we observed
a significant performance gain. Using just four
threads while updating the particle buffer
resulted in a more than 100% increase in
efficiency. While adding more threads may
further increase performance, massive
parallelization without a thread system such as
CUDA could actually plateau or even lower the
performance.

Fig. 6: Initial start of rendering for separate
sources and multiple particles being generated
per frame.

Fig. 7: multiple particle generation after some
time.

The next set of tests were run on a windows
computer with an i5-6600k CPU and a GTX
1060 6GB GPU. The outcome in Fig. 3 was the
result of a 50x50x50 particle buffer and could be
observed in real time with fluid camera
movement and no noticeable slowdown upon
shifting the camera. The next test, in Fig. 6 and
Fig. 7, was the same scene but with four more



particles being generated every frame. The
actual performance difference was not
noticeable and the program suffered little, if any,
slowdown. However, when the particle buffer
was increased to a size of 200x200x200
particles, the program wouldn’t even render a
single frame, let alone in real time. The limitation
in the amount of particles derives far more from
the number of items to check in the buffer rather
than the number of particles that need to be
rendered.

7- LIMITATIONS

During testing we were limited on the diversity of
our tests. Between the two of us, we only had
two computers to actually test the simulation on.
Testing on an older machine would likely show a
significant slowdown and would receive little
performance increase from threading.

We were also limited by using one of the
homework assignments as a framework for the
3D rendering. Using the homework made it
difficult to package the simulation. Transferring
the build was also troublesome since
dependencies would typically throw errors.
Using a more open source engine that allowed
for simpler rendering could have increased
performances as well.

8 - CONCLUSION

The final results of our program produced a
rather favorable outcome for our initial goal. The
program can easily render as many as 125,000
particles at once with no noticeable slowdown.
However, there do exist hard limits based on the
initial size of the particle buffer and at high
enough numbers the program will cease to
operate. On the other hand, the actual number
of particles being displayed on the screen at a
time doesn’t change the overall performance of
the program based on the small differences
found from our experiments, Fig. 3 and Fig. 7.
With 3D integration of the parallelization code,
the overall limit of the buffer size should be

increased based on our findings in the 2D
version of the algorithm.

9 - WORK DISTRIBUTION

The work on this project was distributed
between Jon and Sam. The 2D implementation
and parallelization was handled by Jon, while
the 3D implementation and rendering was
handled by Sam. Initially, Jon created the
particle class and particle buffer. This was then
handed off to Sam to render in OpenGL and
adjust to fit in 3D. Jon then proceeded to work
on parallelization for the 2D implementation.

10 - FUTURE WORK

The parallelization portion of the project could be
improved significantly. Using CUDA to handle
threading at a much larger scale could lead to
significant performance gains. Standard game
engine optimizations like culling could be applied
to increase rendering performance.
Implementing an acceleration structure or other
ways to prevent updating all the particles each
frame could also lead to a performance gain.
One method could be to add all particles in the
camera’s view to a buffer. This secondary buffer
would be updated while all other particles would
schedule updates to be run asynchronously or
just simply not update if they are far enough
away.

REFERENCES

[1] Bittker, Max. Making Sandspiel,
maxbittker.com/making-sandspiel.

[2] Purho, Petri. Exploring the Tech and Design
of Noita. Game Developers' Conference, 2 Jan.
2020.

[3] Hill, Mark D, and Michael R Marty. Amdahl’s
Law in the Multicore Era. 2008, Amdahl’s Law in
the Multicore Era,
www.cs.rpi.edu/~chrisc/COURSES/PARALLEL/
SPRING-2020/papers/hill-multicore.pdf.

http://www.cs.rpi.edu/~chrisc/COURSES/PARALLEL/SPRING-2020/papers/hill-multicore.pdf
http://www.cs.rpi.edu/~chrisc/COURSES/PARALLEL/SPRING-2020/papers/hill-multicore.pdf


[4] Sims, Karl. “Particle Animation and
Rendering Using Data Parallel Computation.”
Proceedings of the 17th Annual Conference on
Computer Graphics and Interactive Techniques
- SIGGRAPH '90, 1990,
doi:10.1145/97879.97923.


