Solar System Simulation

Alexander Chuckas
Rensselaer Polytechnic Institute

Figure 1: Left is a top view rendering of the first 4 planets in the solar system and their orbits around the sun. Right
is the first 4 planets, the sun, and the comet Encke from a side view to show extreme orbits.

ABSTRACT

In this paper, I describe a method for simulating a solar
system of unlimited planetary bodies (system
hardware determined). The methodology is based on
real physics with orbit paths and day-night cycles for
simulated masses based on real-life planetary data and
orbital parameters. The blunt of the work is done via
physical equations and matrix transformations on
isolated planetary meshes.

1. INTRODUCTION

My inspiration for this project comes directly from an
interest in space phenomenon since I was a kid and
from the i0OS application “Night Sky”. “Night Sky” is
an app which effectively acts as a planetarium in your
pocket, showing an accurate map of various stars,
constellations, and planets. The principal behind the
geolocation of each of these celestial bodies over time
is effectively the same as what my project is trying to
accomplish. Ultimately, this project was born out of a
curiosity of our solar system.

My project builds off the base library provided in
homework 3, namely the spherical mesh generation.
Initially I was using a much more complex spherical
mesh, but manipulating its location was much more
complicated than need be which led me back to
homework 3. The homework 3 library also provided
code for simulating line paths with OpenGL which
allowed for orbit path visuals to be added.

I will cover related work in section 2 and then the core
features of my project in section 3. Discussion of the
results can be found in section 4. Limitations & bugs,
and future work can be found in sections 5 and 6
respectively.

2. RELATED WORK

The topic of this paper is not new at least in the sense of the
physical calculations for planetary positions. However, the
actual implementation of the algorithms in a real-time
rendering software is what this project tries to accomplish.
Prior work in this field most generally comes from the
information provided by NASA’s website regarding orbital
parameters. Each of these parameters taken directly from the
website are what make up the key components of the my .obj
files, allowing me to render the solar system. Other prior
work involves known matrix transformation formulae and
research into general forms of the Rodrigues formula.
Ultimately, this project is an implementation of worldly
phenomenon based on real-world data.

3. CORE FEATURES

Prior to delving into the individual sections, a few
terms need to be defined:

e Periapsis: the point in orbit when the planet is
closest to the body it orbits (in our case the sun)

e Ecliptic: the plane of the Earth’s orbit

e Eccentric Anomaly: angular position within the
reference orbit.

e Mean Anomaly: the fraction of an elliptical
orbit’s period which has been completed.

e True Anomaly: major angular parameter in
Keplerian orbit. Angle between direction of
periapsis and current position of body.

3.1 Planet Mesh Models

The planet mesh models were heavily based on
Professor Cutler’s provided homework 3 code, namely
the sphere.cpp and sphere.h classes. The generic
sphere classes provided code for generating a
simplistic, spherical mesh based around a central
location provided in a .obj file. The original input
parameters for the sphere class were:

sxyzr

where s indicates a sphere, x, y, z is a representation
for a Vec3f point location for the center of the mesh,
and r is the radius of the sphere. The meshes were
generated with few vertices. I chose to use a simple
mesh since using a complex mesh would have
significantly slowed mesh updates.

While this class provided a basic setup, it would need
to be expanded for use. A number of new input
parameters were needed. The below table gives a
general format for a planet within the .obj file with the
new parameters.

num
z r cycle orbit tilt

Z@Qih—oz-ca
Z@wg"zx
€ e e e ex

Table 1: General structure of a .obj input file

The above table represents the general format for
inserting a planet into the solar system. The leftmost
column in the table represents a token indicating to the
program a certain element is being read in. All other
columns are values associated with that token. The
first row is the material to be wrapped around the
sphere (a texture as a .ppm file or a solid color). The
second row indicates this object is a planet (similar to
sphere but now we use a p) and once again has the
central point vector formed form x, y, z and the radius
r. The new parameters are the cycle, orbit, and tilt.
Cycle is represented in hours and is the time it takes a
planet to complete a full day-night cycle. Orbit is the
time in days it takes a planet to complete one
revolution around a central body. Tilt is represented in
degrees and is the axis the planet spins on. All other
rows are the orbital parameters which effect the shape
and orientation of a body’s orbit.

3.2 Elliptical Orbits

This subsection is broken down into three parts. The
shape section discusses how to create the elliptical
shape of the orbit and the orientation section discusses
how the orbit path is oriented. The final section
discusses implementation. The orbit paths of the
planets are determined by 6 orbital elements:
Longitude of the Ascending Node (N), Inclination (i),
Argument of perihelion (w), semi-major axis (a),
eccentricity (e), and mean anomaly (M).

3.21 Shape

The orbital elements involved in the shape of the orbit
are the semi-major axis a and the eccentricity e of the
orbit . The semi-major axis is a general parameter used
in creating an ellipse and is the longest semidiameter
(ie. given the 2 diameters of an ellipse, the semi-major
is the larger one). Effectively, it is the largest of 2 axial
radii. Eccentricity is a non-negative real number that
uniquely characterizes the orbit’s shape. The semi-
major axis and semi-minor axis length are related
through the eccentricity which can be broken down
into a few value ranges where e=0 represents a circular
orbit, e=(0,1) is elliptical, e=1 is parabolic, and e > 1
is hyperbolic. In order to fully see the orbit,
eccentricity is limited to range [0,1].

C

ﬁ_ Focus

mkmm@@ @

Not eccentric Eccentric
(circle) (ellipse)
C/A=0 0<C/A <1

Figure 2: Representation of an ellipse showing
eccentricity and the semimajor axis

3.2.2 Orientation

The orbital elements involved in the orientation of the
orbit are the inclination i, the longitude of the
ascending node denoted as A, and the argument of
periapsis denoted as w. The inclination is the angle
between the plane of orbit (in our case the ecliptic) and
the reference plane (the plane the celestial body is
orbiting in). The longitude of the ascending node is the
location where the orbit of our celestial body crosses
the reference plan from below to above it. Effectively
it is one of two intersection points between the
reference plane and the ecliptic. The argument of
periapsis is the angle between the ascending node and
the periapsis (within the reference plane).

Celestial body

True anomaly .3")
- Argument of pgriapsis

Longitude of ascending node

— .
Reference
direction

Play
"€ Of reference
Inclination

ot

Figure 3: Diagram showing all major angular
parameters for elliptical orbits around a reference
plane

3.3.3 Implementation

Initially, my implementation for orbital positions was
done in real-time causing my system to bottleneck and
in addition would limit future expansion of the
simulation to allow for orbit paths to be shown. As
such, the implementation of elliptical orbit paths starts
with the generation of a planet object. Each planet
object is given the input parameter of orbit duration in
years. The mean anomaly is thus determined as the full
360-degree orbit divided by the orbit duration. As an
example, the mean anomaly constant value for earth is
360 /365. The mean anomaly is then multiplied by the
current day in the animation to get the location of the
orbit. All angle based orbital elements (mean anomaly
included) are reduced to be between 0 and 360 for
viability for each iteration of an orbit location being
generated.

Once the orbital elements are normalized to be
between 0 and 360 degrees, we want to calculate 2 of
the 3 major angular parameters that define a position
along an elliptic Kepler orbit. The first of which, the
eccentric anomaly, is defined iteratively. In some
cases where the eccentricity of an orbit is large (near
1), the eccentric anomaly will need multiple iterations
to converge at an adequate number. It is defined as
follows:

1 ?EG =M + (180_deqg/pi) * & * sin(M)
2 * (1 + e*cos(M))
while abs(El - E0) > 0.005:
4 E = El
El = E0 -
€ - (B0 - (180 deg/pi) * sin(EQ) - M)
7 / (1 - e*cos(E0))

The eccentric anomaly allows for the orbit’s
coordaintes to be extracted within its own reference
plane of orbit. This means we still need to re-orient the
plane to be based on the ecliptic orbit. A good next
step is to transition to rectangular coordinates using

the relationship between the eccentric anomaly and the
rectangular x and y coordiantes in the reference plane:

1 x=a* (co.s{E.) - e)
2 y =a * sqrt(l - e*e) * sin(E)

From here, we convert to distance and true anomaly
(the second major angular parameter):

1 r
2 v

sqri(x*x + y*x)
atan2(y, x)

Using the true anomaly, the orbit position in reference
to the ecliptic plane is extracted:

L = viw
2 ¥xe = r ¥ (cos(N) * cos(L) - sin(N) * sin(L) * cos(i))
3 ye = r * (sin(N) * cos(L) - cos(N) * sin{L) * clos(i))
4 ze =1 * sin(L) * sin(i)

These equations will provide the position of the
celestial bodies in astronomical units. For purposes of
demonstration I have provided a scale within the
planet object class. This scale factor allows for all of
the planets to be and in general provides a better visual
effect. Once a position is determined it is stored for
later use.

The positions previously calculated are referenced at
every animation timestep where the day counter is
incremented by 1. The centerpoint of the mesh is set to
the new position and the vertices are realigned to the
new center. If the realignment step is skipped, the
planet will scatter based on the new center.

Figure 4: A planet without realigned vertices
deviating from its orbit

33 Day-Night Cycles

Day night cycles for the planet meshes involve
rotating the spherical planet object around an axis
which is based on the planet’s tilt. Fortunately, the
matrix transformation for a spinning body around an
arbitrary axis is something already derived and is
known as the Rodrigues Formula. My initial exposure
to the formula was in the first lecture of this class on
and was brought up when discussing matrix
transformations (namely rotation) for points in a 3d
grid system. The Rodrigues Formula is as follows.

= cus&+mf (1 - cos) wy wy (1 —cos#l) — w, sinf w,y sinf + wy w; (1 - cos)
w; sin @ + wy wy (1 - cos 6) CGSHerf (1 -cos#) —twy Sinfl + wy w; (1 - cos)
=ty SinB + wy w (1 —cos) wy sinb+ wy w; (1 —cos) msﬁ'“df (1 - cos &)

Initially when implementing the Rodrigues Formula,
I was multiplying by the wrong axis value in the
center column, resulting in some of my planets
looking like pancakes.

voE
~

.

Figure 5: Deflated planets due to failed Rodrigues
Formula

I choose to increment the day-night cycles using the
same counter as the day cycles for the orbit. This
choice was made with the knowledge this would not
accurately simulate the real day-night cycles,
however, for the purposes of this project I wanted them
to be visible. If day-night cycles were on a different
parameter than orbit, either the orbit would have to be
slowed down so much it was no longer apparent or the
planet meshes would update so frequently no spinning
would occur.

The actual implementation of Rodrigues was based off
the input parameters of tilt and cycle. The axis of
rotation was formed as

1 Vec3f u(sin(tilt), cos(tilt), 0);

From here a translation needed to be applied so that
the planet would not orbit a central axis, but rather spin
around an axis. The translation was based on the center
of the planet mesh. With a translation and axis chosen,
the Rodrigues formula was applied to all vertices.

3.4 Showing the Orbit Paths

The solar system would not be complete without a
visualization of orbit paths. Initially, when I was trying
to implement the paths, I was utilizing the planet
position vectors and OpenGL rendering via
GL _LINE LOOP, however after countless hours of
work, I deemed this methodology a failure and looked
for other avenues of presenting orbit paths.

This is where the RayTree data structure comes in. The
RayTree data structure allows for visualization of lines
through meshes. As previously discussed, upon
creation of a planet object, its orbit locations are stored
in a 3d position vector. Upon pressing the ‘t” key these
positions are transferred to the RayTree segment
vector and subsequently, all segments (which are
based on the collected 3d planet position vector) for
each planet are displayed to the screen. Effectively a
segment is a connection between 2 points creating a
line which is drawn in the form of a 3d box.

4. RESULTS

I tested my simulation by inputting parameters from
real-world celestial bodies. Initially, I performed tests
on small systems such as the 4 closest planets
(Mercury, Venus, Earth, Mars) and expanded to the
popular comets (Encke, Halley). The general idea was
to test their spins, orbit, and orbit paths and see if there
were any errors. For small systems with small orbit
paths, there was little to no bottleneck, but with larger
orbits (such as Halley) the simulation would slow until
the orbit paths were removed.

After both of these were working, I decided to
implement the entire solar system including all 8
planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Neptune, Uranus) and the 2 most comets I previously
implemented (Encke, Halley). Naturally, the
simulation would run slow when the orbit paths were
showing, however, without orbit paths the simulation
ran surprisingly fast, effectively displaying the solar
systems changes over time. As such the primary goals
for this project were met.

Figure 6: Rendering of 4 closest planets (Mercury,
Venus, Earth, Mars) and their orbit paths

Figure 7: Rendering of 2 comets (Encke, Halley) and
their orbit paths

Figure 8: Rendering of entire solar system and all
planet and comet orbit paths (zoomed in)

Figure 9: Entire solar system top view (zoomed in)

S. LIMITATIONS & BUGS

A more prominent limitation of my simulation
involves the rendering of orbit paths. I noticed the
issue when trying to render my entire solar system
model which includes Halley’s Comet, Jupiter,
Neptune, and Saturn, all of which have rather large
orbits spanning over a large time period. Due to the
length of the orbit, in creating position vectors, there
could be upwards of thousands to go through. In the
case of Halley’s Comet, the orbital period in years is
27,375 days. For every iteration, a minimum of 27,375
*12 mesh triangles would need to be generated to
show just this object’s orbit path.

Upon running the simulation, the meshes size becomes
all too apparent as the simulation moves radically
slower than before. This limitation does not appear to
bottleneck the simulation for smaller orbit paths such
as in the small system test I presented.

6. FUTURE WORK

In the future, I would like to solve the issue of orbit
paths bottlenecking the simulation. One possibility
could be to find a better way to render elliptical
geometry within OpenGL directly as opposed to using
the RayTree data structure. Another optimization,
would like to expand the simulation to be capable of
handling hyperbolic phenomenon.

Beyond simple optimizations, it would be interesting
to add more phenomenon to the system such as bodies
being able to orbit more than just the sun. For example,
implementing moons orbiting specific planets (while
the planets orbit the sun) could be a good expansion.
In addition, adding capabilities to allow rings such as
those for Saturn and actually mapping textures as
opposed to averaging texture color values are put into
consideration. A final rendering touch would be to add
trails to comets or make a new body comet in general
as opposed to rendering them as planets. This way they
could be better differentiated from the planets.

REFERENCES

"JPL Solar System Dynamics." NASA. NASA. Web.
04 May 2021.

Schlyter, Paul. "Computing Planetary Positions - a
Tutorial with Worked Examples." Web. 04
May 2021.

Pramod Kumar, Bhatt, Yogesh C., Shishodiya,
Yogendra S., Rajmal Jain. “Simulation of
Earth orbit around Sun by Computational
Method.” Jagan Nath Institute of Engineering

and Technology. N.p: n.p., n.d. Print.

Rasala, Richard. “The Rodrigues Formula and
Polynomial Differential Operators.” Journal
of Mathematical Analysis and Applications.
N.p.: n.p., n.d. Print.

