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Figure 1: Left is a top view rendering of the first 4 planets in the solar system and their orbits around the sun. Right 

is the first 4 planets, the sun, and the comet Encke from a side view to show extreme orbits. 

 

ABSTRACT 

In this paper, I describe a method for simulating a solar 
system of unlimited planetary bodies (system 
hardware determined). The methodology is based on 
real physics with orbit paths and day-night cycles for 
simulated masses based on real-life planetary data and 
orbital parameters. The blunt of the work is done via 
physical equations and matrix transformations on 
isolated planetary meshes.  

1. INTRODUCTION 

My inspiration for this project comes directly from an 
interest in space phenomenon since I was a kid and 
from the iOS application “Night Sky”. “Night Sky” is 
an app which effectively acts as a planetarium in your 
pocket, showing an accurate map of various stars, 
constellations, and planets. The principal behind the 
geolocation of each of these celestial bodies over time 
is effectively the same as what my project is trying to 
accomplish. Ultimately, this project was born out of a 
curiosity of our solar system.  

My project builds off the base library provided in 
homework 3, namely the spherical mesh generation. 
Initially I was using a much more complex spherical 
mesh, but manipulating its location was much more 
complicated than need be which led me back to 
homework 3. The homework 3 library also provided 
code for simulating line paths with OpenGL which 
allowed for orbit path visuals to be added.   

I will cover related work in section 2 and then the core 
features of my project in section 3. Discussion of the 
results can be found in section 4. Limitations & bugs, 
and future work can be found in sections 5 and 6 
respectively.  

2.  RELATED WORK 
The topic of this paper is not new at least in the sense of the 
physical calculations for planetary positions. However, the 
actual implementation of the algorithms in a real-time 
rendering software is what this project tries to accomplish. 
Prior work in this field most generally comes from the 
information provided by NASA’s website regarding orbital 
parameters. Each of these parameters taken directly from the 
website are what make up the key components of the my .obj 
files, allowing me to render the solar system. Other prior 
work involves known matrix transformation formulae and 
research into general forms of the Rodrigues formula. 
Ultimately, this project is an implementation of worldly 
phenomenon based on real-world data.  

3.  CORE FEATURES 

Prior to delving into the individual sections, a few 
terms need to be defined: 

• Periapsis: the point in orbit when the planet is 
closest to the body it orbits (in our case the sun) 

• Ecliptic: the plane of the Earth’s orbit 
• Eccentric Anomaly: angular position within the 

reference orbit. 
• Mean Anomaly: the fraction of an elliptical 

orbit’s period which has been completed.  



• True Anomaly: major angular parameter in 
Keplerian orbit. Angle between direction of 
periapsis and current position of body.  

3.1 Planet Mesh Models 

The planet mesh models were heavily based on 
Professor Cutler’s provided homework 3 code, namely 
the sphere.cpp and sphere.h classes. The generic 
sphere classes provided code for generating a 
simplistic, spherical mesh based around a central 
location provided in a .obj file. The original input 
parameters for the sphere class were: 

s x y z r 

where s indicates a sphere, x, y, z is a representation 
for a Vec3f point location for the center of the mesh, 
and r is the radius of the sphere. The meshes were 
generated with few vertices. I chose to use a simple 
mesh since using a complex mesh would have 
significantly slowed mesh updates.  

While this class provided a basic setup, it would need 
to be expanded for use. A number of new input 
parameters were needed. The below table gives a 
general format for a planet within the .obj file with the 
new parameters. 

m num       
p x y z r cycle orbit tilt 
N N u      
i i u      
w w u      
a a u      
e e u      
M M       
        

Table 1: General structure of a .obj input file 

The above table represents the general format for 
inserting a planet into the solar system. The leftmost 
column in the table represents a token indicating to the 
program a certain element is being read in. All other 
columns are values associated with that token. The 
first row is the material to be wrapped around the 
sphere (a texture as a .ppm file or a solid color). The 
second row indicates this object is a planet (similar to 
sphere but now we use a p) and once again has the 
central point vector formed form x, y, z and the radius 
r. The new parameters are the cycle, orbit, and tilt. 
Cycle is represented in hours and is the time it takes a 
planet to complete a full day-night cycle. Orbit is the 
time in days it takes a planet to complete one 
revolution around a central body. Tilt is represented in 
degrees and is the axis the planet spins on. All other 
rows are the orbital parameters which effect the shape 
and orientation of a body’s orbit.  

3.2 Elliptical Orbits 

This subsection is broken down into three parts. The 
shape section discusses how to create the elliptical 
shape of the orbit and the orientation section discusses 
how the orbit path is oriented. The final section 
discusses implementation. The orbit paths of the 
planets are determined by 6 orbital elements: 
Longitude of the Ascending Node (N), Inclination (i), 
Argument of perihelion (w), semi-major axis (a), 
eccentricity (e), and mean anomaly (M). 

3.2.1 Shape 

The orbital elements involved in the shape of the orbit 
are the semi-major axis a and the eccentricity e of the 
orbit . The semi-major axis is a general parameter used 
in creating  an ellipse and is the longest semidiameter 
(ie. given the 2 diameters of an ellipse, the semi-major 
is the larger one). Effectively, it is the largest of 2 axial 
radii. Eccentricity is a non-negative real number that 
uniquely characterizes the orbit’s shape. The semi-
major axis and semi-minor axis length are related 
through the eccentricity which can be broken down 
into a few value ranges where e=0 represents a circular 
orbit, e=(0,1) is elliptical, e=1 is parabolic, and e > 1 
is hyperbolic. In order to fully see the orbit, 
eccentricity is limited to range [0,1]. 

 

Figure 2: Representation of an ellipse showing 
eccentricity and the semimajor axis 

3.2.2 Orientation 

The orbital elements involved in the orientation of the 
orbit are the inclination i, the longitude of the 
ascending node denoted as N, and the argument of 
periapsis denoted as w. The inclination is the angle 
between the plane of orbit (in our case the ecliptic) and 
the reference plane (the plane the celestial body is 
orbiting in). The longitude of the ascending node is the 
location where the orbit of our celestial body crosses 
the reference plan from below to above it. Effectively 
it is one of two intersection points between the 
reference plane and the ecliptic. The argument of 
periapsis is the angle between the ascending node and 
the periapsis (within the reference plane). 



 

Figure 3: Diagram showing all major angular 
parameters for elliptical orbits around a reference 

plane  

3.3.3 Implementation 

Initially, my implementation for orbital positions was 
done in real-time causing my system to bottleneck and 
in addition would limit future expansion of the 
simulation to allow for orbit paths to be shown. As 
such, the implementation of elliptical orbit paths starts 
with the generation of a planet object. Each planet 
object is given the input parameter of orbit duration in 
years. The mean anomaly is thus determined as the full 
360-degree orbit divided by the orbit duration. As an 
example, the mean anomaly constant value for earth is 
360 / 365. The mean anomaly is then multiplied by the 
current day in the animation to get the location of the 
orbit. All angle based orbital elements (mean anomaly 
included) are reduced to be between 0 and 360 for 
viability for each iteration of an orbit location being 
generated.  
 
Once the orbital elements are normalized to be 
between 0 and 360 degrees, we want to calculate 2 of 
the 3 major angular parameters that define a position 
along an elliptic Kepler orbit. The first of which, the 
eccentric anomaly, is defined iteratively. In some 
cases where the eccentricity of an orbit is large (near 
1), the eccentric anomaly will need multiple iterations 
to converge at an adequate number. It is defined as 
follows: 

 

The eccentric anomaly allows for the orbit’s 
coordaintes to be extracted within its own reference 
plane of orbit. This means we still need to re-orient the 
plane to be based on the ecliptic orbit. A good next 
step is to transition to rectangular coordinates using 

the relationship between the eccentric anomaly and the 
rectangular x and y coordiantes in the reference plane: 

 

From here, we convert to distance and true anomaly 
(the second major angular parameter): 

 

Using the true anomaly, the orbit position in reference 
to the ecliptic plane is extracted: 

 

These equations will provide the position of the 
celestial bodies in astronomical units. For purposes of 
demonstration I have provided a scale within the 
planet object class. This scale factor allows for all of 
the planets to be and in general provides a better visual 
effect. Once a position is determined it is stored for 
later use. 

The positions previously calculated are referenced at 
every animation timestep where the day counter is 
incremented by 1. The centerpoint of the mesh is set to 
the new position and the vertices are realigned to the 
new center. If the realignment step is skipped, the 
planet will scatter based on the new center. 

 
Figure 4: A planet without realigned vertices 

deviating from its orbit 

3.3 Day-Night Cycles 

Day night cycles for the planet meshes involve 
rotating the spherical planet object around an axis 
which is based on the planet’s tilt. Fortunately, the 
matrix transformation for a spinning body around an 
arbitrary axis is something already derived and is 
known as the Rodrigues Formula. My initial exposure 
to the formula was in the first lecture of this class on 
and was brought up when discussing matrix 
transformations (namely rotation) for points in a 3d 
grid system. The Rodrigues Formula is as follows. 



 

Initially when implementing the Rodrigues Formula, 
I was multiplying by the wrong axis value in the 
center column, resulting in some of my planets 
looking like pancakes.  

 

Figure 5: Deflated planets due to failed Rodrigues 
Formula 

 
I choose to increment the day-night cycles using the 
same counter as the day cycles for the orbit. This 
choice was made with the knowledge this would not 
accurately simulate the real day-night cycles, 
however, for the purposes of this project I wanted them 
to be visible. If day-night cycles were on a different 
parameter than orbit, either the orbit would have to be 
slowed down so much it was no longer apparent or the 
planet meshes would update so frequently no spinning 
would occur.  

The actual implementation of Rodrigues was based off 
the input parameters of tilt and cycle. The axis of 
rotation was formed as 

 

From here a translation needed to be applied so that 
the planet would not orbit a central axis, but rather spin 
around an axis. The translation was based on the center 
of the planet mesh. With a translation and axis chosen, 
the Rodrigues formula was applied to all vertices. 

3.4  Showing the Orbit Paths 

The solar system would not be complete without a 
visualization of orbit paths. Initially, when I was trying 
to implement the paths, I was utilizing the planet 
position vectors and OpenGL rendering via 
GL_LINE_LOOP, however after countless hours of 
work, I deemed this methodology a failure and looked 
for other avenues of presenting orbit paths.  

This is where the RayTree data structure comes in. The 
RayTree data structure allows for visualization of lines 
through meshes. As previously discussed, upon 
creation of a planet object, its orbit locations are stored 
in a 3d position vector. Upon pressing the ‘t’ key these 
positions are transferred to the RayTree segment 
vector and subsequently, all segments (which are 
based on the collected 3d planet position vector) for 
each planet are displayed to the screen. Effectively a 
segment is a connection between 2 points creating a 
line which is drawn in the form of a 3d box.  
 
4.  RESULTS 
I tested my simulation by inputting parameters from 
real-world celestial bodies. Initially, I performed tests 
on small systems such as the 4 closest planets 
(Mercury, Venus, Earth, Mars) and expanded to the 
popular comets (Encke, Halley). The general idea was 
to test their spins, orbit, and orbit paths and see if there 
were any errors. For small systems with small orbit 
paths, there was little to no bottleneck, but with larger 
orbits (such as Halley) the simulation would slow until 
the orbit paths were removed.  
 
After both of these were working, I decided to 
implement the entire solar system including all 8 
planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, 
Neptune, Uranus) and the 2 most comets I previously 
implemented (Encke, Halley). Naturally, the 
simulation would run slow when the orbit paths were 
showing, however, without orbit paths the simulation 
ran surprisingly fast, effectively displaying the solar 
systems changes over time.  As such the primary goals 
for this project were met. 
 

 
 

 
Figure 6: Rendering of 4 closest planets (Mercury, 

Venus, Earth, Mars) and their orbit paths 
 



 

Figure 7: Rendering of 2 comets (Encke, Halley) and 
their orbit paths 

 

Figure 8: Rendering of entire solar system and all 
planet and comet orbit paths (zoomed in) 

 

Figure 9: Entire solar system top view (zoomed in) 

 
 

 

5.  LIMITATIONS & BUGS 

A more prominent limitation of my simulation 
involves the rendering of orbit paths. I noticed the 
issue when trying to render my entire solar system 
model which includes Halley’s Comet, Jupiter, 
Neptune, and Saturn, all of which have rather large 
orbits spanning over a large time period. Due to the 
length of the orbit, in creating position vectors, there 
could be upwards of thousands to go through. In the 
case of Halley’s Comet, the orbital period in years is 
27,375 days. For every iteration, a minimum of 27,375 
*12 mesh triangles would need to be generated to 
show just this object’s orbit path. 

Upon running the simulation, the meshes size becomes 
all too apparent as the simulation moves radically 
slower than before. This limitation does not appear to 
bottleneck the simulation for smaller orbit paths such 
as in the small system test I presented.  
 
6. FUTURE WORK 

In the future, I would like to solve the issue of orbit 
paths bottlenecking the simulation. One possibility 
could be to find a better way to render elliptical 
geometry within OpenGL directly as opposed to using 
the RayTree data structure. Another optimization, 
would like to expand the simulation to be capable of 
handling hyperbolic phenomenon. 
 
Beyond simple optimizations, it would be interesting 
to add more phenomenon to the system such as bodies 
being able to orbit more than just the sun. For example, 
implementing moons orbiting specific planets (while 
the planets orbit the sun) could be a good expansion. 
In addition, adding capabilities to allow rings such as 
those for Saturn and actually mapping textures as 
opposed to averaging texture color values are put into 
consideration. A final rendering touch would be to add 
trails to comets or make a new body comet in general 
as opposed to rendering them as planets. This way they 
could be better differentiated from the planets.  
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