Dynamic Procedural Generation of Terrain with Hydrologic Systems

Dynamic Procedural Generation of Terrain
with Hydrologic Systems

Advanced Computer Graphics, Project Report

Jay Franklin
Rensselaer Polytechnic Institute

Abstract

Keywords: Template, formats, instructions, length, conference publications

Introduction

Creating the vast areas of terrain needed for games and other simulations is a time-intensive process when
performed manually by an artist. With procedural content generation (PCG), terrain is instead algorithmi-
cally generated without input from a user beyond specification of initial parameters. Many popular video
games, including the highly popular game Minecraft, use PCG to create an infinite world for the player to
explore—using dynamic world generation methods, new terrain is continuously generated around the player
and the world appears to never end. In contrast, world-building methods use PCG to pre-generate a world
of fixed size, typically iterating over this world multiple times to simulate real-world environmental pro-
cesses [1]. Although world-building methods require an initial period of time to generate the world, they are
able to be used with a greater variety of algorithms than dynamic PCG methods since the entire world state
can be accessed during the generation process.

Therefore, dynamic world generation methods are somewhat
limited in the realism of terrain they can produce in compari-
son to world-building methods [2]. In particular, elements of
hydrologic systems such as rivers—an extremely common fea-
ture of terrain and terrain generation algorithms—are difficult
to generate and simulate realistically with conventional dy-
namic approaches. For example, Figure 1 depicts a river which
abides by two simple requirements: firstly, the river must flow
from a point of high elevation to a point of low elevation, and
secondly, a river which intersects with another river should
join it, rather than cross it. Simple rivers matching these re-
quirements are easily possible to achieve via world-building
methods, as the path of a river can be traced iteratively from
its source. However, this approach cannot work without mod-
ification if the entire world has not yet been generated. If the
location at point B is generated before point A, then point B will not contain the river until point A is gener-
ated. Rivers generated via dynamic terrain generation are therefore frequently unrealistic, such as rivers in
Minecraft worlds which do not flow from high to low points, and instead remain at sea level [3].

Figure 1. A river, flowing from high
elevation at point A to low elevation
at point B.

In this project, we introduce a dynamic terrain generation method that overcomes this issue via incorporat-
ing elements of both world-building and dynamic PCG in the terrain generation process. This hybrid method
creates terrain with both geologic elements (such as mountains and valleys) and a system of interconnected
hydrologic elements (rivers, lakes, and seas) to generate world of unlimited size at runtime with rivers that
match the basic properties outlined above. We demonstrate our results via generation of 2D maps, where
the color at a given (x,y) point represents either elevation or the presence of water, and analyze the results.

Advanced Computer Graphics Final Report, Spring 2021 1



Dynamic Procedural Generation of Terrain with Hydrologic Systems

Related Work

Procedural terrain generation is a highly active area of research, and there has been a huge investment into
researching the best approaches to use for generating a game world, including approaches to generate sys-
tems of rivers. According to a survey of the field by Smelik et al. [4], river generation approaches typically
operate over an entire pre-existing heightmap, and are therefore categorized as world-building approaches
(as opposed to dynamic world generation). In general, most river network generation approaches can be
divided into two categories: those using teleological methods, and those using ontogenetic methods [5].
Ontogenetic approaches eschew simulating in-between steps and instead try to algorithmically approximate
the end result of the terrain process directly: a good example of this is a height map generated with Perlin
noise [6]——Perlin noise has no relation to the real-world processes that determine elevation, but it can stand
in for it well enough to be used to procedurally generate terrain. Ontogenetic approaches to river network
generation include an early method by Kelley et al [4], which uses fractal subdivision of linear components,
or the more advanced fractal method by Prusinkiewicz et al. [7] which creates rivers and mountains simulta-
neously. The latter technique could theoretically be adapted for dynamic generation of an infinite world, but
the approach has several issues which cause its rivers to lack realism, and the highly mathematical nature
of the approach results in low explainability and a prohibitively high difficulty in its modification. However,
we do use a similar fractal approach to algorithmic generation of geological features, as fractal methods can
be used to dynamically expand from a lower level of detail to a higher level.

Other approaches to procedural generation are teleological. Teleological approaches generate a world by
simulating the actual physical processes that create terrain in real life (e.g. erosion, continental drift, and
so on) to ensure that the terrain appears realistic when compared to real-world terrain. An example of this
is the seminal 2013 SIGGRAPH paper by Genevaux et al. [8] which simulates the locations of watersheds
and trajectories of rivers according to a hierarchical drainage network, created by expanding a graph of river
paths inward from coastal outlets. Unlike many other teleological river-terrain generation methods, such
as the similar methods described by Peytavie et al. [9], the Genevaux methods include elements of dynamic
terrain generation. For this reason, along with the simplicity of the algorithm and the highly realistic results
of the approach, we have chosen to adapt parts of the Genevaux methods to be used with our infinite-world
terrain generation framework.

Methods

Features

The basic principle behind our approach is to dynamically generate a connected graph of features—metadata
that describes some geological or hydrological aspect of the terrain—and to combine these features with
world-building techniques to ensure terrain remains consistent and realistic. We chose this feature-based
method as it naturally lends itself to a high level of explainability, can be extended with the addition of more
types of features, and is intuitive to understand. If a mountain is not some emergent aspect of a random
noise function, but instead a feature known within the world ahead of time, then one does not need to waste
computation on finding the nearest local optimum—the location of nearby mountains are already known.
Similarly, this feature system lends itself well to customizability and adaptability—the manifestation of a fea-
ture can be adjusted to use whatever algorithm makes the most sense for the use case, and can even include
multiple sub-features nested within it (such as a mountain range feature containing multiple mountains).

Feature can have the following properties:

« Origin: The (base) position of the feature, in (x,y) coordinates.

« Influence: A function accepting an (x,y) value as input and returning a value representing the level
of influence the feature should have over the given coordinates. A value of one is a normal level of
influence, a value of one-half indicates the feature’s influence is reduced by half, and a value of zero
indicates the feature does not affect the coordinates in any way.

« Elevation: A function accepting an (x,y) value as input and returning a value representing the eleva-
tion that the feature adds or subtracts for the given coordinates. This function is used for geological

Advanced Computer Graphics Project Report, Spring 2021 2



Dynamic Procedural Generation of Terrain with Hydrologic Systems

features—features that describe the basic lay of the land.

« Moisture: A function accepting an (x,y) value as input and returning a value representing how much
surface water is present at the given coordinates. At present, any nonzero value is rendered the same
way (as indicating water is present), but this value also be used to indicate different levels of water-flow.

+ Moisture: A function accepting an (x,y) value as input and returning a value representing how much
surface water is present at the given coordinates. At present, any nonzero value is rendered the same
way (as indicating water is present), but this value also be used to indicate different levels of water-flow.

» Sub-features: A list of additional, nested features that are contained within the parent feature.

Using these properties, we can create a variety of features which lend themselves well to creating a realistic-
looking world. In particular, we can use the influence mechanic to ensure features never extend too far,
beyond the space where features have been computed; most features have an internal radius parameter
where a feature is at 100% influence when the distance from their origin is at 75% of their radius, to 0%
influence at 100% of the radius or more.

The list of features we have included is as follows:

» Continent: A continent describes the top-level landmass that defines the basic shape of an area of
land, including its origin (a position roughly corresponding to the center of the continent), and baseline
dimensions in j-k-I space (hexagonal coordinates, as described in World Structure below). It contains
many additional features as sub-features, and uses these to compute elevation and moisture for a given
coordinate.

« Mountain: A geological feature indicating that an area of land is elevated. Mountains are at present
defined according to an input size, which determines its dimensions in dimensions in j-k-I space and
its maximum elevation. The dimensions and maximum elevation are used to create the mountain’s
elevation function, which resembles a cosine curve with its maximum value at the mountain’s origin
(its summit) and reaching zero at the extent of its dimensions (its base). Mountains that are placed in
water will generally create islands.

« Mountain range: A mountain range describes a series of mountains which are placed, one after the
other in a polyline. Mountains are smaller at the ends of the line, and larger at the center.

« Valley: The inverse of a mountain, a valley has a negative elevation and therefore reduces land in a
given area. Valleys that reduce an area below sea level will generally create gulfs, peninsulas, or even
inland seas.

« River: Rivers start at their origin—a river source, frequently placed on the snow line of a mountaintop—
and descend to an area of lower elevation. The river returns a positive moisture value for areas with
surface water, and a non-positive moisture value for areas without surface water.

« Lake: Lakes are places whenever a river runs into a local minimum—an area where it can no longer
descend downward. Like a river, a lake will also return a positive moisture value for the areas it en-
compasses which are directly covered by water. Lakes will generally have one or more rivers branching
out from them.

World Structure

The world itself is subdivided into different zones. with a maximum of one continent having its origin in
each zone. The zones are a tessellation of hexagons, as rectangular zones might create too much regularity,
and if a continent is to be placed in a zone the location of that continent is jittered (Figure 2).

A continent can extend to multiple zones, up to a maximum distance of the radius of one zone. Due to this,
there may be multiple continents overlapping a specific coordinate, and a coordinate may be affected only
by continents outside of its containing zone. For this reason, we also define a zone neighborhood: for a
given coordinate, its neighborhood of zones is 1) its containing zone, and 2) the six zones bordering that
containing zone. This is illustrated in Figure 2: the hexagonal area labeled “A” and the bordering zones
labeled “B” make up the zone neighborhood of any location within “A.”

Advanced Computer Graphics Project Report, Spring 2021 3



Dynamic Procedural Generation of Terrain with Hydrologic Systems

Figure 2. The zones used to divide the world. Each red hexagon represents a jittered location
where a continent could spawn; each group of hexagons in one color represents one zone.

To allow maximum flexibility within the world structure, we
used a (ij,k) coordinate system in addition to the basic (x,y)
system. The (i,j,k) coordinate system is structured as described
by Amit Patel [10], such that each coordinate corresponds to a
pair of sides of a given hexagon, and moving in one dimension
(such as the 7 dimension) means that dimension stays static,
one of the other dimensions is increased and the other is de-
creased (so j could increase and k could decrease, as shown
in figure 3). The advantages of using this coordinate system
are that it gives greater variation to functions operating over
a 2-D space: the elevation of an (x,y) coordinate within the
influence of a mountain is computed by first converting these
coordinates to the (i,j,k) system, and then applying a separate
elevation function along each of the (i,k) axes.

Additionally, the world itself stores one additional value be-
yond its zones’ continents (and their nested features): the
world seed. The world seed is combined with the (i,j,k) coordi-
nates of each zone to create a new seed for said zone, and this
seed is used to determine whether a continent exists in a zone,
what its location is, and what additional features and parame-

Figure 3. The (ij,k) coordinate
system for hexagons. The central
hexagon is at (0,0,0). Movement
through one of the three axes results
in two values changing, such that all
coordinates for a given hexagon add
up to zero.

ters it has (and the additional features and parameters of those nested features, and so on).

Dynamic World Generation

When elevation or moisture for a specific (x,y) coordinate needs to be generated, the dynamic world gener-
ation algorithm is run to ensure all required features are generated, and then these features are queried for
their elevation, moisture, and influence values. The algorithm is as follows

1. Continent retrieval: In the first step, the appropriate continent(s) are retrieved, corresponding to
all of the continent(s) in the zone neighborhood enclosing (x,y). If a zone has not yet been assigned
a continent at this point, the continent is generated now, and cached within the world—although like
all features, the subfeatures of this continent are not populated with features until they are needed to
be retrieved. Until then, only the continents which (x,y) is within the influence of are retrieved and (if

they haven'’t already) populated during the following step.

2. Elevation: In the next step, elevation for the (x,y) coordinate is determined according to the sum of
the elevation at (x,y) of each continent retrieved during step 1. If they haven’t already, the geological
features of this continent are created according to the seed of their enclosing continent, assigned any
additional subfeatures, and used to determine the elevation. There is a random mix of mountains and
valleys of varying sizes and shapes created, and possibly a few mountain ranges. Most of these features

Advanced Computer Graphics Project Report, Spring 2021 4



Dynamic Procedural Generation of Terrain with Hydrologic Systems

are clustered within the coastline of the continent itself, but some mountains or mountain ranges may
be outside of it (islands and island chains).

After all of the features have contributed their elevation, the sum elevation value is multiplied by the
influence function of (x,y) for the enclosing continent, ensuring there is no hard edge between areas
of influence. Finally, three layers of Perlin Noise are applied to the final value: the first has a small
amplitude and higher variation, the second has medium amplitude and medium variation, and the
third has a high amplitude and a high variation. Although the noise serves to further vary the continent,
it is not the primary source of variation and only serves to enhance the existing variation and ensure
hard lines do not remain — the noise layer is not large compared to the features to outweigh them.

3. Moisture: In the final step, the moisture map is computed by adding the two hydrological features:
rivers and lakes. River sources are added to mountains which reach a predefined snow level, as well
as sprinkled around the rest of the area. When a river is added, a recursive function is started which
finds areas adjacent to the river that are lower than it in elevation, chooses one at random, and recur-
sively continues finding locations from that point on. If it cannot find a lower area, it adds a lake, and
begins searching the area surrounding the lake for outlets to the river. If it encounters other sources
of water—such as another river, or the sea—the process stops. In this way, an entire drainage network
is iteratively added over the whole continent.

Results

Figure 4. Left: the hexagonal render (note it is somewhat stretched in the horizontal dimen-
sion). Right: the full render.

We tested the algorithm using two renders: the hexagonal render, which is rendered quickly but only fills in
each hexagonal tile on the map with the elevation or moisture value at the center of that hexagon, and the full
render, which takes longer to produce but colors each pixel with a unique value. We tested with a 100-by-
80-hexagon image, rendering in about five or ten seconds depending on the complexity of the terrain, and a
1000-by-1000-pixel full render (of varying scales), which took about two or three minutes (again depending
on terrain complexity). See Figure 4 for a side-by-side comparison.

Although we did not have enough time to create a height-map, we used the 2D maps to represent both
elevation and water for a given point. If a point is light blue to dark blue, it is either below sea level or
covered by a river or lake. If a point is yellow, green, dark green, brown, gray, or white, in that order, the
point is representing an area of lower or higher elevation, respectively. Additionally, gray or white points
represent areas which are above the snow line, and therefore are likely to be originating rivers. Brown points
are of high enough elevation that they typically indicate a mountain feature.

We evaluate the efficacy of the method according to the following requirements, which were initially outlined
in the project proposal:

Advanced Computer Graphics Project Report, Spring 2021 5



Dynamic Procedural Generation of Terrain with Hydrologic Systems

AR

.

Figure 5. Left: A hexagonal render with rivers. Center: A full render with rivers. Right:
Another hexagonal render with rivers, this time showing how multiple rivers can merge into
one river or a lake.

1. Terrain is generated within the bounds of a continent, which has realistic-looking coastlines.
Specifically, the coastlines are jagged/natural-seeming, and has areas with gulfs, peninsulas,
etcetera.

Figure 7 depicts some of the varying coastlines generated using our methods. As the methods overlap the
“basic” coastline of the initial continent feature with additional mountain and valley features, we can see
terrain resembling gulfs, peninsulas, and so on. Additionally, the coastlines are jagged in small areas, and
appear smoother in others, resembling real-world geography.

2. Within the continent, the elevation is effected by geological features such as mountains and
valleys.

This is again easily visible in Figure 7, as the placement of mountains and valleys creates interesting topology.
Note that lighter green depicts lower elevation, and darker green depicts higher elevation, with brown and
gray/white at the highest elevation. There are a few mountain ranges visible in these images as well—areas
of multiple mountains in a row—but these will require some more tweaking to be truly noticeable.

3. Rivers flow realistically from higher elevation (e.g. mountaintop) to lower elevation (e.g.
coastline).

We consider this to be mostly a success. As seen in Figure 5 and Figure 8, rivers do flow from areas of high
elevation to areas of low elevation, and meander in a somewhat realistic way. However, we believe that with
a more complex river-generation algorithm applied over the existing terrain model we have developed, we
can continue to improve the hydrology to make more realistic-seeming river paths.

4. Rivers interact realistically with one another——two rivers will not cross one another, but
merge into one river.

This is again seen in Figure 5, where rivers do not zig-zag across one another but instead merge into one

river. However, we think that this could be made more realistic by taking into account variables such as
river flow and channel capacity, such that two rivers will merge into a larger river.

Discussion
Challenges

We faced a number of challenges during the development process. Although the algorithm was mostly
sound, implementation was difficult, as the multiple interacting components needed to be implemented

Advanced Computer Graphics Project Report, Spring 2021 6



Dynamic Procedural Generation of Terrain with Hydrologic Systems

Figure 6. Left: A blooper image from early in the development process. Right: A blooper
image from more recent in development (hexagonal render).

exactly right in order to not produce artifacts. If a miscalculation occurred, a hard edge would be seen be-
tween different features, as seen in Figure 6. The reason for these varied, but typically what would occur is
either 1) the correct feature would not be retrieved for a given coordinate, or 2) a feature would not gradually
diminish in influence, but instead keep going until it reached the boundary of the area where it would be
retrieved. In total, development took about fifty or sixty hours over more than a month, including a great
deal of time simply spent sketching out and revising algorithms as well as their implementation, revision,
and debugging.

Additionally, deciding on the best approach for rivers was difficult. We intially were planning to implement
a more complex river generation algorithm, based on [8], but due to time constraints we were limited to
implementation of the simpler algorithm only. We hope to revise the project in the future and continue to
add additionally complexity over the existing framework.

Conclusion

Overall, we consider the project to be a success. It could still be improved in quite a few ways, but at the same
time, the finished product meets all of our initial requirements set out in the project proposal. Moreover,
the framework we have created is incredibly extensible, as more features can be added with ease, as well as
explainable—as all of the features are stored with the terrain as metadata, tweaking the environment and
adjusting parameters to produce different terrain is a far simpler process. Parameters include values such
as the number of features per continent, the size of continents, probabilities of each feature, sizes of each
feature, the size of the dividing zones, and so on—all easily connected to a core component of the algorithmic
process, such that revising terrain to create the kind of terrain desired by a user for a program is a far simpler
process than tweaking black-box variables. As a whole, we consider creating this project to be a valuable
research experience, and will continue to add on to the project in the future.

References

1. Doull A. World Building — Procedural Content Generation Wiki; 2010. [Online; accessed 3-May-2021].
Available from: http://pcg.wikidot.com/pcg-algorithm:world-building.

2. Doull A. The death of the level designer; 2008. Available from: http://pcg.wikidot.com/
the-death-of-the-level-designer.

3. Wiki contributors. River — Official Minecraft Wiki; 2021. [Online; accessed 3-May-2021]. Available
from: https://minecraft.fandom.com/wiki/River.

4. Kelley AD, Malin MC, Nielson GM. Terrain simulation using a model of stream erosion. In: Proceedings
of the 15th annual conference on Computer graphics and interactive techniques; 1988. p. 263—268.

5. Doull A. Teleological vs. Ontogenetic — Procedural Content Generation Wiki; 2010. [On-

Advanced Computer Graphics Project Report, Spring 2021 7



10.

Dynamic Procedural Generation of Terrain with Hydrologic Systems

line; accessed 3-May-2021]. Available from: http://pcg.wikidot.com/pcg-algorithm:
teleological-vs-ontogenetic

Marinescu A. OPTIMIZATIONS IN PERLIN NOISE-GENERATED PROCEDURAL TERRAIN. Studia
Universitatis Babes-Bolyai, Informatica. 2012;57(2).

Prusinkiewicz P, Hammel M. A fractal model of mountains and rivers. In: Graphics Interface. vol. 93.
Canadian Information Processing Society; 1993. p. 174—180.

. Génevaux JD, Galin E, Guérin E, Peytavie A, Benes B. Terrain generation using procedural models based

on hydrology. ACM Transactions on Graphics (TOG). 2013;32(4):1—13.

. Peytavie A, Dupont T, Guérin E, Cortial Y, Benes B, Gain J, et al. Procedural Riverscapes. In: Computer

Graphics Forum. vol. 38. Wiley Online Library; 2019. p. 35—46.
Patel A. Hexagonal Grids; 2013. [Online; accessed 3-May-2021]. Available from: https://www.
redblobgames.com/grids/hexagons.

Advanced Computer Graphics Project Report, Spring 2021 8



Dynamic Procedural Generation of Terrain with Hydrologic Systems

Figure 7. Four full renders of different worlds and at different scales, showing the various
mountain and coastline patterns which appear with some of the basic parameters. Left to
right, top to bottom: a ten-samples-per-hexagon render, a five-sample scale render, a four-
sample render, and a one-sample render.

Advanced Computer Graphics Project Report, Spring 2021 9



Dynamic Procedural Generation of Terrain with Hydrologic Systems

Figure 8. A full render with rivers at a scale of one sample per hexagon per pixel.

Advanced Computer Graphics Project Report, Spring 2021 10




