Simulating Rube Goldberg Machines Using Rigid Body Collisions

Aaron Hill

1 Motivation

There are many impressive video
demonstrations of domino chains or Rube
Goldberg-esque machines in computer graphics.
They capture the potential of rigid body simulation
by showing the actions of multiple simple objects
chaining together to produce large or entertaining
effects. For example, the Fiat Lux video that was
shown in lecture used a chain of dominoes falling
over to enhance the already impressive ray tracing
effects on display. Our goal was to use rigid body
collision detection to create our own version of a
computer-modeled Rube Goldberg machine that

could produce similarly awe-inspiring results.

2 Related Work

Much of our implementation was informed
by the works of David Baraff, who has done a lot of
work in the field of rigid body simulations (and
co-developed the engine used in the Fiat Lux
video). Baraff laid out the foundation for both the
object representation of rigid bodies as well as how
to simulate contacts between them [1].

Others have made significant contributions

in this area as well; Gottschalk et al. described a

Austen Ross

data structure which allows for significantly faster
interference detection in many scenarios [4].
Kaufman et al. outlined a method of calculating
friction between bodies in an approach that can
handle over one thousand nonconvex rigid bodies

simultaneously [5].

3 Implementation
3.1 Representation of Rigid Bodies

Using the rigid body structure described in
[1] as a guide, we represent each object (referred
to in our code as a Body) as a collection of point
masses (vertices) that share “state variables”. Each
body stores a vector of vertices, allowing it to
render itself to the screen in its current position.
Additionally, each body stores four “state variables”:
position (usually the position of the center of mass),
orientation, and both linear and angular
momentum.

At each time step, the net force and torque
being currently applied to the body produce the rate
of change of each state variable. From these state
variables, the “auxiliary variables,” the linear and

angular velocity as well as the inertia tensor, are



calculated at each time step using equations from
physics described in [1].

There are also a number of constant
variables associated with each rigid body object.
The object’s mass and coefficient of friction
(currently unused) can be specified at object
creation. There’s also a constant component of the
body’s inertia tensor that is calculated at object
creation, called |_body.

|_body is determined by the average
distance of a point mass from the center of mass of
the body. In our current implementation, we
inaccurately use only the vertices to represent all
point masses, as an approximation; while
potentially not an issue for shapes like cubes or
spheres, this would certainly cause issues for the
vast majority of possible meshes. In the future,
|_body should be properly calculated by sampling
all of the point masses of the body. Additionally, if
one wanted to model a body with non-uniform
density, the calculation would need to be modified
even further.

Bodies store their orientation in the form of
a quaternion; a pair consisting of a real value and a
three-vector describing an imaginary axis. The
quaternion class was given overloaded operators to
support addition and multiplication by other

quaternions, 3-vectors, and scalars, as well as

addition with other quaternions. This quaternion
can also be converted to a three-by-three
orientation matrix to be used in calculating the
angular velocity of the body at each timestep.

Compared to a three-by-three matrix,
quaternions need to store less redundant data,
which makes them both more storage efficient and
less prone to numerical drift than matrices. While
interpreting the meaning behind the values of a
qguaternion is somewhat unintuitive, it can always
be converted back into a standard orientation
matrix.

Since motion is applied equally to all point
masses on a rigid body, most information was
stored only by the body - the individual vertices do
not need to store their momentum or orientation,
nor do they need to know about the forces acting
on them. However, each vertex does store its
position in “body space” - its position in relation to
the body’s center of mass. Since we are only
performing translations and rotations in our
simulations, each vertex’s body space position
should remain constant, and only needs to be
computed at object creation.

Using the body’s linear and angular
velocities, as well as a vertex’s current position

relative to the body’s center of mass, we are able to



determine the rate of change of that vertex’s

position in world space at each time step.

3.2 Handling Physics

We modeled the physics of our system
using Newton's laws of motion. At each step of our
simulation, we computed the forces on each object
(and therefore the acceleration via F = ma), applied
these forces as an update to our velocity, and
applied the velocity as an update to our position.

We used the simplest possible numerical
solution to this system of ordinary differential
equations - Euler's method. This had the advantage
of integrating nicely with the rest of our simulation -
since we only needed to know the values of our
derivatives (acceleration and velocity) at the current
time step to compute the update for the next time
step, there was no need to store additional
information with each body.

However, Euler's method is only a first-order
method - in a more complicated simulation, this
lack of accuracy might become apparent. One area
for enhancement is to apply a more accurate,
higher-order ODE solver, such as Runge-Kutta.
However, we do not have an explicit function for the
values of the derivatives (e.g. acceleration) in our

system - we must compute them at each time step

based on the current positions of bodies within our
simulation.

Since higher-order methods like
Runge-Kutta require evaluating derivatives at
multiple values of the independent variable to
compute a single time step, implementing this in
our simulation would require some moderately
significant refactorings to our code. Specifically, we
will need to extend our program with the ability to
'speculatively' determine the forces at a future point
in time, and then 'rewind' back to a previous point in
time. For simple scenes involving only two or three
objects, the extra precision might not be noticeable.
However, it could reduce the need for non-physical
tricks such as velocity dampening in situations

where the simulation might not otherwise converge.

3.3 Collision Detection and Response

Our implementation of collision handling
was based heavily off David Baraff’s work in [1].
Specifically, we implemented the 'contact collisions'
described in the referenced paper. Contact
collisions occur when two objects are observed to
interpenetrate at a particular time step. To handle
contact collisions, the simulation must 'rewind' time
to the point where the objects first collided, and
calculate the necessary forces to apply to prevent

interpenetration.



One significant limitation of our current
approach is that all models must have their vertices
specified by hand in a single input file. We
implemented some basic functionality to duplicate a
model with a translation applied - however, this
approach will not scale to a large number of
finely-positioned objects. To make it easier to
design complex scenes involving many objects, it
would be useful to be able to position the objects
within the simulation, instead of needing to edit
individual vertex positions manually.

While working on the project, we initially had
difficulty with the correct computation of contact
forces between objects and the ground plane. At
the start, an object passing through the ground
plane caused a force to be applied in the opposite
direction, which was intended to bring the velocity
to zero instantaneously. However, this did not result
in the desired effect - instead, the applied force
resulted in an overcorrection to the velocity. As a
result, the cube appeared to oscillate in and out of

the ground plane:

ACG HW4 PIPELINE A _ 0O X

.

Since the oscillating effect occurs over
several frames, it cannot easily be demonstrated
via a still image. However, the above screenshot
gives an idea of the nature of the problem - the
grey cube has penetrated through the ground plane
to the other side. When contact forces are being
simulated correctly - this should never happen - the
interpenetration should be detected and resolved
by the simulation through a contact force, with the
result that every frame rendered to the screen
shows objects in physically correct positions (i.e. no
interpenetration).

Another challenge came during the
implementation of rotation. Our rotation
implementation caused the cube to grow in size as
it rotated, instead of keeping the vertices at a fixed
distance relative to each other. Unfortunately, we

were not able to solve this problem - this is certainly



an area for additional improvement. This problem
may be the result of using Euler’s method rather
than a more precise method like Runge-Kutta when

updating vertex positions at each time step.

P -y

ACG HW4 PIPELINE A _ 0O X

In the above image, one of the cubes has become
significantly larger than the other (and has
stretched and sheared along one axis) after rotating
for several seconds. The smaller cube has not
rotated much, as and a result is not yet
experiencing the same enlargement and shearing.
Given enough time, the smaller cube will also
display the same effects as the larger cube.
4 Results

One early result was the rendering of the

'separating plane' between two objects:

ACG HW4 PIPELINE A - 0O X

In this image, the grey cubes are both
'bodies' in our simulation. The green plane is the
'separating plane' between them. The separating
plane is not unique - there are an infinite number of
planes that can be constructed between the two
cubes. However, since our simulation is limited to
convex polyhedra, the separating plane must be
parallel to one of the faces of one of the two bodies.
We use this property to construct a separating
plane by simply testing all faces on each cube. The
final separating plane that we compute is offset
slightly by a small distance epsilon from the chosen
face - this allows us to render the plane without

Z-fighting.

5 Conclusions

One area that we would like to improve on
is the types of allowed interactions between
objects. Currently, each object is modeled as a rigid
body, with a single acceleration vector for the entire

object. As a result, interactions between objects are



limited to instantaneous collisions and resting
contacts. It is not possible for objects to be
'coupled' or 'linked' to each other in a way that our
simulation can understand. Allowing a persistent
connection between objects would allow us to
simulate more complex scenes, such as a lever
attached to a block.

Another area of improvement is improving
the ease of debugging our program. Debugging
issues with the simulation, such as incorrect
velocities or rotations, currently requires logging
information about a body at each step. If the
problem only being visible through many time steps
of the simulation, this will produce a large amount
of output for the developer to sort through. Adding
in some debugging visualizations could make these
kinds of issues much easier to diagnose and solve.
For example, rendering the force and acceleration
vectors as arrows on each object could help make
it obvious to developers when a problem is
occuring, when it might not be clear simply from
looking at a table of acceleration and velocity
values.

A final area for extension is implementing
additional types of collision handling. In addition to
'colliding contacts', the paper [1] describes 'resting
contacts' between two objects. These collisions

allow two objects to remain stationary while in

contact with each other, while still being free to
separate under the influence of other forces.
However, implementing this type of collision is
significantly more complicated - using the approach
described in [1], a quadratic programming solver is
required.

Aaron worked on the implementation of the
separating plane calculation and rendering,
extensions to the object file format used to render
collisions, and the initial implementation of
collisions with the ground plane. Austen worked on
the initial framework setup, implementation of the
physics simulation (mass, forces, and
quaternion-based rotation), as well as
improvements to ground-plane and object collision

handling.

6 References

[1] Baraff D. An Introduction to Physically Based
Modeling. In SIGGRAPH 1997 Course Notes,
1997.

[2] Baraff D. Analytical methods for dynamic
simulation of non-penetrating rigid bodies. In
Computer Graphics (Proc. SIGGRAPH), volume

23, pages 223-232. ACM, July 1989.



[3] Baraff D. Fast contact force computation for
nonpenetrating rigid bodies. In Computer Graphics
(Proc. SIGGRAPH), 28:23-34, 1994.

[4] Gottschalk S., Lin M. C., Manocha D. OBBTree:
A Hierarchical Structure for Rapid Interference
Detection. In Computer Graphics (Proc.
SIGGRAPH), pages 171-180, August 1996.

[5] Kaufman D. M., Edmunds T., Pai D. K. Fast
Frictional Dynamics for Rigid Bodies. In ACM
Transactions on Graphics 24(3):946-956, 2005

[6] Moore M. and Wilhelms J. Collision Detection
and Response for Computer Animation. In

Computer Graphics, Volume 22, Number 4, 1988.


https://www.researchgate.net/journal/ACM-Transactions-on-Graphics-1557-7368
https://www.researchgate.net/journal/ACM-Transactions-on-Graphics-1557-7368

