
Simulating Rube Goldberg Machines Using Rigid Body Collisions

Aaron Hill Austen Ross

1 Motivation

There are many impressive video

demonstrations of domino chains or Rube

Goldberg-esque machines in computer graphics.

They capture the potential of rigid body simulation

by showing the actions of multiple simple objects

chaining together to produce large or entertaining

effects. For example, the Fiat Lux video that was

shown in lecture used a chain of dominoes falling

over to enhance the already impressive ray tracing

effects on display. Our goal was to use rigid body

collision detection to create our own version of a

computer-modeled Rube Goldberg machine that

could produce similarly awe-inspiring results.

2 Related Work

Much of our implementation was informed

by the works of David Baraff, who has done a lot of

work in the field of rigid body simulations (and

co-developed the engine used in the Fiat Lux

video). Baraff laid out the foundation for both the

object representation of rigid bodies as well as how

to simulate contacts between them [1].

Others have made significant contributions

in this area as well; Gottschalk et al. described a

data structure which allows for significantly faster

interference detection in many scenarios [4].

Kaufman et al. outlined a method of calculating

friction between bodies in an approach that can

handle over one thousand nonconvex rigid bodies

simultaneously [5].

3 Implementation

3.1 Representation of Rigid Bodies

Using the rigid body structure described in

[1] as a guide, we represent each object (referred

to in our code as a Body) as a collection of point

masses (vertices) that share “state variables”. Each

body stores a vector of vertices, allowing it to

render itself to the screen in its current position.

Additionally, each body stores four “state variables”:

position (usually the position of the center of mass),

orientation, and both linear and angular

momentum.

At each time step, the net force and torque

being currently applied to the body produce the rate

of change of each state variable. From these state

variables, the “auxiliary variables,” the linear and

angular velocity as well as the inertia tensor, are



calculated at each time step using equations from

physics described in [1].

There are also a number of constant

variables associated with each rigid body object.

The object’s mass and coefficient of friction

(currently unused) can be specified at object

creation. There’s also a constant component of the

body’s inertia tensor that is calculated at object

creation, called I_body.

I_body is determined by the average

distance of a point mass from the center of mass of

the body. In our current implementation, we

inaccurately use only the vertices to represent all

point masses, as an approximation; while

potentially not an issue for shapes like cubes or

spheres, this would certainly cause issues for the

vast majority of possible meshes. In the future,

I_body should be properly calculated by sampling

all of the point masses of the body. Additionally, if

one wanted to model a body with non-uniform

density, the calculation would need to be modified

even further.

Bodies store their orientation in the form of

a quaternion; a pair consisting of a real value and a

three-vector describing an imaginary axis. The

quaternion class was given overloaded operators to

support addition and multiplication by other

quaternions, 3-vectors, and scalars, as well as

addition with other quaternions. This quaternion

can also be converted to a three-by-three

orientation matrix to be used in calculating the

angular velocity of the body at each timestep.

Compared to a three-by-three matrix,

quaternions need to store less redundant data,

which makes them both more storage efficient and

less prone to numerical drift than matrices. While

interpreting the meaning behind the values of a

quaternion is somewhat unintuitive, it can always

be converted back into a standard orientation

matrix.

Since motion is applied equally to all point

masses on a rigid body, most information was

stored only by the body - the individual vertices do

not need to store their momentum or orientation,

nor do they need to know about the forces acting

on them. However, each vertex does store its

position in “body space” - its position in relation to

the body’s center of mass. Since we are only

performing translations and rotations in our

simulations, each vertex’s body space position

should remain constant, and only needs to be

computed at object creation.

Using the body’s linear and angular

velocities, as well as a vertex’s current position

relative to the body’s center of mass, we are able to



determine the rate of change of that vertex’s

position in world space at each time step.

3.2 Handling Physics

We modeled the physics of our system

using Newton's laws of motion. At each step of our

simulation, we computed the forces on each object

(and therefore the acceleration via F = ma), applied

these forces as an update to our velocity, and

applied the velocity as an update to our position.

We used the simplest possible numerical

solution to this system of ordinary differential

equations - Euler's method. This had the advantage

of integrating nicely with the rest of our simulation -

since we only needed to know the values of our

derivatives (acceleration and velocity) at the current

time step to compute the update for the next time

step, there was no need to store additional

information with each body.

However, Euler's method is only a first-order

method - in a more complicated simulation, this

lack of accuracy might become apparent. One area

for enhancement is to apply a more accurate,

higher-order ODE solver, such as Runge-Kutta.

However, we do not have an explicit function for the

values of the derivatives (e.g. acceleration) in our

system - we must compute them at each time step

based on the current positions of bodies within our

simulation.

Since higher-order methods like

Runge-Kutta require evaluating derivatives at

multiple values of the independent variable to

compute a single time step, implementing this in

our simulation would require some moderately

significant refactorings to our code. Specifically, we

will need to extend our program with the ability to

'speculatively' determine the forces at a future point

in time, and then 'rewind' back to a previous point in

time. For simple scenes involving only two or three

objects, the extra precision might not be noticeable.

However, it could reduce the need for non-physical

tricks such as velocity dampening in situations

where the simulation might not otherwise converge.

3.3 Collision Detection and Response

Our implementation of collision handling

was based heavily off David Baraff’s work in [1].

Specifically, we implemented the 'contact collisions'

described in the referenced paper. Contact

collisions occur when two objects are observed to

interpenetrate at a particular time step. To handle

contact collisions, the simulation must 'rewind' time

to the point where the objects first collided, and

calculate the necessary forces to apply to prevent

interpenetration.



One significant limitation of our current

approach is that all models must have their vertices

specified by hand in a single input file. We

implemented some basic functionality to duplicate a

model with a translation applied - however, this

approach will not scale to a large number of

finely-positioned objects. To make it easier to

design complex scenes involving many objects, it

would be useful to be able to position the objects

within the simulation, instead of needing to edit

individual vertex positions manually.

While working on the project, we initially had

difficulty with the correct computation of contact

forces between objects and the ground plane. At

the start, an object passing through the ground

plane caused a force to be applied in the opposite

direction, which was intended to bring the velocity

to zero instantaneously. However, this did not result

in the desired effect - instead, the applied force

resulted in an overcorrection to the velocity. As a

result, the cube appeared to oscillate in and out of

the ground plane:

Since the oscillating effect occurs over

several frames, it cannot easily be demonstrated

via a still image. However, the above screenshot

gives an idea of the nature of the problem - the

grey cube has penetrated through the ground plane

to the other side. When contact forces are being

simulated correctly - this should never happen - the

interpenetration should be detected and resolved

by the simulation through a contact force, with the

result that every frame rendered to the screen

shows objects in physically correct positions (i.e. no

interpenetration).

Another challenge came during the

implementation of rotation. Our rotation

implementation caused the cube to grow in size as

it rotated, instead of keeping the vertices at a fixed

distance relative to each other. Unfortunately, we

were not able to solve this problem - this is certainly



an area for additional improvement. This problem

may be the result of using Euler’s method rather

than a more precise method like Runge-Kutta when

updating vertex positions at each time step.

In the above image, one of the cubes has become

significantly larger than the other (and has

stretched and sheared along one axis) after rotating

for several seconds. The smaller cube has not

rotated much, as and a result is not yet

experiencing the same enlargement and shearing.

Given enough time, the smaller cube will also

display the same effects as the larger cube.

4 Results

One early result was the rendering of the

'separating plane' between two objects:

In this image, the grey cubes are both

'bodies' in our simulation. The green plane is the

'separating plane' between them. The separating

plane is not unique - there are an infinite number of

planes that can be constructed between the two

cubes. However, since our simulation is limited to

convex polyhedra, the separating plane must be

parallel to one of the faces of one of the two bodies.

We use this property to construct a separating

plane by simply testing all faces on each cube. The

final separating plane that we compute is offset

slightly by a small distance epsilon from the chosen

face - this allows us to render the plane without

Z-fighting.

5 Conclusions

One area that we would like to improve on

is the types of allowed interactions between

objects. Currently, each object is modeled as a rigid

body, with a single acceleration vector for the entire

object. As a result, interactions between objects are



limited to instantaneous collisions and resting

contacts. It is not possible for objects to be

'coupled' or 'linked' to each other in a way that our

simulation can understand. Allowing a persistent

connection between objects would allow us to

simulate more complex scenes, such as a lever

attached to a block.

Another area of improvement is improving

the ease of debugging our program. Debugging

issues with the simulation, such as incorrect

velocities or rotations, currently requires logging

information about a body at each step. If the

problem only being visible through many time steps

of the simulation, this will produce a large amount

of output for the developer to sort through. Adding

in some debugging visualizations could make these

kinds of issues much easier to diagnose and solve.

For example, rendering the force and acceleration

vectors as arrows on each object could help make

it obvious to developers when a problem is

occuring, when it might not be clear simply from

looking at a table of acceleration and velocity

values.

A final area for extension is implementing

additional types of collision handling. In addition to

'colliding contacts', the paper [1] describes 'resting

contacts' between two objects. These collisions

allow two objects to remain stationary while in

contact with each other, while still being free to

separate under the influence of other forces.

However, implementing this type of collision is

significantly more complicated - using the approach

described in [1], a quadratic programming solver is

required.

Aaron worked on the implementation of the

separating plane calculation and rendering,

extensions to the object file format used to render

collisions, and the initial implementation of

collisions with the ground plane. Austen worked on

the initial framework setup, implementation of the

physics simulation (mass, forces, and

quaternion-based rotation), as well as

improvements to ground-plane and object collision

handling.

6 References

[1] Baraff D. An Introduction to Physically Based

Modeling. In SIGGRAPH 1997 Course Notes,

1997.

[2] Baraff D. Analytical methods for dynamic

simulation of non-penetrating rigid bodies. In

Computer Graphics (Proc. SIGGRAPH), volume

23, pages 223–232. ACM, July 1989.



[3] Baraff D. Fast contact force computation for

nonpenetrating rigid bodies. In Computer Graphics

(Proc. SIGGRAPH), 28:23–34, 1994.

[4] Gottschalk S., Lin M. C., Manocha D. OBBTree:

A Hierarchical Structure for Rapid Interference

Detection. In Computer Graphics (Proc.

SIGGRAPH), pages 171-180, August 1996.

[5] Kaufman D. M., Edmunds T., Pai D. K. Fast

Frictional Dynamics for Rigid Bodies. In ACM

Transactions on Graphics 24(3):946-956, 2005

[6] Moore M. and Wilhelms J. Collision Detection

and Response for Computer Animation. In

Computer Graphics, Volume 22, Number 4, 1988.

https://www.researchgate.net/journal/ACM-Transactions-on-Graphics-1557-7368
https://www.researchgate.net/journal/ACM-Transactions-on-Graphics-1557-7368

