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ABSTRACT
In this paper, we explore our processes and struggles
implementing efficient, interactive-performance reflection,
refraction and other physically-based lighting effects using
environmental mapping in a rasterized, game engine context. We
compared our rasterized results to results generated via a much
slower, less efficient ray-tracing method and found that the
behavior of our implementation closely matched the ray-tracing
results. We also discuss some pitfalls of our implementation and
some of our successes.

1. INTRODUCTION
Rasterization is a commonly used method to render 3D scenes. Its
capability to utilize GPU power allows it to excel in runtime
efficiency, which is ideal for real-time rendering. Therefore
rasterization is commonly adopted in graphics fields when speed
is crucial, such as in video games, where 30 ~ 60 frames need to
be rendered within a second. Our implementation aims to function
as a part of a game engine.

Game engines play an important role in modern game
development. By abstract complex tasks and computations, game
engines are used to aid design, help designers and artists, and
provide an easy workflow with as little artistic restriction as
possible. Our project implements rasterization models for
physically-based materials in a game engine, allowing users of the
engine to intuitively apply diffuse and non-lambertian materials to
arbitrary meshes and to manipulate the properties of these
materials using texture maps and exposed parameters (of
roughness, metalness, IOR).

Save for the ray tracing application that we used to verify our
baseline reflection and refraction work, we implemented our
solutions in Lynx Engine, Hongyang Lin’s game engine, which
had a number of features already implemented. This decision
allowed for more structured and intuitive debugging.

2. RELATED WORK
Cook and Torrance first introduced microfacets models into the
field of computer graphics. His BRDF provides a flexible
framework for later scholars to extend and modify [Cook &
Torrance, 1981]. The proposed BRDF and its variations are
widely used in graphics [Ngan et al., 2004].
Walter et al developed a method to render refraction through
rough surfaces. The paper also proposed a modified combination
of the normal distribution and geometry functions [Walter et al.,
2007].
Brian Kevis, a graphics engineer who worked on the rendering
pipeline Unreal Engine 4, did a comprehensive study on various
components in BRDF. His work has provided an invaluable
source for us to decide on BRDF components. Brian also
discussed the approach for implementing the rendering pipeline in
Unreal Engine 4 [Karis, 2013a][Karis, 2013b].

Blinn and Newell proposed a then novel technique, called
environmental mapping, for mapping an environment, represented
by a 2D texture, onto the surfaces of objects in a rendering
pipeline [Blinn et al., 1976]. Blinn and Newell sampled this
texture by converting vectors reflected from the surface of objects
into polar vectors and querying uniquely warped textures using
the azimuth angle of the vector as the abicass coordinate and the
polar angle as the ordinate coordinate. Hoffman and Gene
described an alternative environmental mapping method, called
cube mapping or cube projection mapping, which utilizes six 2D
textures representing a cube formed around a scene [Greene,
1986]. Hoffman and Gene’s cube mapping is the method of
environmental mapping we’ve made use of for reflection and
refraction.
Chris Wyman introduced an approach to modeling refraction
using two rendering passes, which nets results that are much
closer to raytraced results than for single normal refraction used to
sample an environmental map [Wyman, 2005]. We’ve directly
adapted Wyman’s method for our implementation of refraction.

3. THEORY
v view vector
l light vector
h halfway vector (between light and view)
ω

𝑜 outgoing direction

ω
𝑖 incoming direction

N the normal of a surface
I normalized directional vector from camera to surface
R directional vector of refracted light

3.1 Roughness, Microfacets
Radiance is a physics quantity originated in radiometry, in the
field of optics. Radiometry measures electromagnetic radiation
and the distribution of radiation’s power in space. Radiance is a
compound quantity that measures the radiant flux of a surface
over a solid angle. The unit of radiance is watt per steradian per
square metre. Radiance is useful not only because it allows us to
measure the outgoing light from a surface, but also because it can
be conveniently transcribed into shaders. If the surface area and
solid angle are set to infinitely small, radiance effectively models
a single light ray hitting one fragment. Irradiance measures the
sum of radiance over all directions. The unit of irradiance is watt
per square metre.
Microfacets theory states that every surface is composed by
countless small mirrors, which are referred to as microfacets.
When a light hits a microfacet, part of the energy enters the
surface, while the rest part of the energy is reflected. The
roughness of a surface is determined by the alignment of



microfacets. On rough surfaces, microfacets tend to face different
directions, causing the reflected image to appear blurry. While
smooth surfaces tend to have microfacets facing roughly the same
direction, resulting in clearer reflections and more concentrated
specular light. Metals and dielectrics react differently to light.
Metals absorb all refracted light, showing no diffused color.
Therefore, metals only leaves reflected light.
Instead of modeling individual microfacets, the surface is
simplified as a macrosurface. We use the BRDF framework first
introduced by Cook & Torrance to model the macrosurface with
three components: a normal distribution function, a geometry
function, and fresnel’s equation. The normal distribution function
D calculates the approximated ratio of microfacets that reflects the
light in the viewer’s direction. The geometry function G
approximates the self-masking or shadowing ratio of the
microfacets. Fresnel’s equation F calculates the reflection ratio of
the surface according to viewing angle.
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Figure 1: Roughness Results on Reflective Surfaces, Steel (left)
and Rusted Iron (right), both with a roughness value of 0.7.

3.2 Refraction
Refractive objects bend light according to Snell’s law due to the
change in a light ray’s speed when crossing between mediums:
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refraction of the exitted medium. is the angle between theθ
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incoming ray’s directional vector and the directional vector of the
normal of the surface; if N is the normalized directional vector of
the normal at the surface and I is the normalized directional vector
from the camera to the surface, then:
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surface’s normal and the refracted ray’s directional vector. If R is
the normalized directional vector of the ray after it has refracted:

= acos(dot(R, -N))θ
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A vector-based equation can be derived from Snell’s law and is as
follows:
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𝑅 =  𝑟𝑎𝑡𝑖𝑜 *  𝐼 −  (𝑟𝑎𝑡𝑖𝑜 *  𝑑𝑜𝑡(𝑁,  𝐼) +  𝐾) *  𝑁

4. IMPLEMENTATION
4.1 Roughness
We implemented the glossy effect of microfacet roughness by
forming mipmaps of our cube map textures, downscaling a
texture’s resolution by a factor of two for each sequential mipmap
level of detail (LOD).
In our implementation, we use eight total images of decreasing
resolution for our mipmaps. The material roughness of an object
is clamped between zero (representing no glossiness) and one
(representing the maximum glossiness). Given the material
roughness of an object, we query the desired level of detail from
the cubemap mipmap by multiplying the roughness by the max
LOD value, which in the case of eight images would be a value of
seven. At intermediate LOD, such as 1.5, GLSL can interpolate
between the closest two mipmap textures, allowing for a gradual
effect without the need for additional mipmap images.

Figure 2: Visible seams from poor convolution results on the
edges of images of our cubemaps.
For smaller values of roughness, this simple technique works well
for a glossy effect, however at larger roughness values, the
diminishing resolution of the mipmap images begins to become
apparent. We attempted to perform blurring convolutions on the
cubemap images before downscaling them in a naive attempt to
correct some of these resolution artifacts. We tested convolutions
using a three by three gaussian blur kernel and a five by five
gaussian blur kernel. These convolutions did reduce visible
artifacts although they did not completely remedy them. We
ultimately chose to use a three by three gaussian kernel. While the
three by three kernel does not hide resolution artifacts as
effectively as the five by five kernel, it produces results more
visually similar to our original implementation and produces less
visible seams in the cubemap edges, see Figure 2. These seams
are caused by convolving individual images of the cubemap with
no knowledge on what is on the other side of edges. These seam
issues could be remedied by convolving across images: sampling
from the appropriate edge of a different image on the boundaries
of an image when the kernel is partially outside the bounds of the
image, but we did not implement this extension.



The roughness value also influences the normal distribution
function, N, and geometry function, G. We adopted the
combination of N, G, F recommended by Brian Karis [Karis,
2013b]. Normal distribution is calculated using Trowbridge-Reitz
GGX method [Walter et al., 2007]:
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The input m, in our case, is the halfway vector that sits between
the light and view vector. α is defined as the square of roughness.
The symbol α will be used across the following formula.
The Schlick-GGX method is selected for geometry masking and
shadowing, combined with Smith’s method. [Walter et al., 2007]
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k is a remapping of the roughness term α.

𝑘 =  α
π

The Schlick-GGX method is used with Smith’s method, which
breaks G into two components, light and view. Same equation is
used for both components[Smith, 1967].
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Schlick’s approximation is used for Fresnel’s equation. F0 is the
reflectance at normal incidence [Schlick, 1994].
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The BRDF is separated into three parts, light reflected, refracted,
and diffused. Metalness is used to calculate the ratio reflected, and
diffuse rate is used to divide the diffused light and refracted light.
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Figure 3: Intermediate results of each component in the BRDF,
from low roughness (left) to high roughness (right). Top: normal
distribution function. Middle: geometry function. Bottom: Fresnel
equation (not affected by roughness)

4.2 Refraction

Figure 4: A sphere modeled with a single refraction (left) and a
raytraced sphere modeled with two refractions (right). The single
refraction result imitates the inversion effect seen in the correct
image (right) but fails to perfectly model its behavior.
4.2.1 Motivation
While rays in a ray-tracing context are scene-aware and capable of
refracting or reflecting an arbitrary number of times, pixel
fragments in a rasterization context are much less scene-aware
and can only easily be refracted a single time. For this reason, it is
common to only model the first entrance refraction when
modeling transparent objects. This can produce reasonable results,
especially for simple objects with low indices of refraction, but
failing to model the exit refraction can result in noticeable
inaccuracies when an object is more refractive, see Figure 4, or
when an object has surface normals which vary rapidly, making it
obvious that the exiting refraction is not modeled.
4.2.2 Description
A rasterization refraction method was proposed by Chris Wyman
[Wyman, 2005] which models the first entrance and first exit
refraction of light through transparent objects. Our
implementation of refraction is a direct adaptation of his method,
in a hopeful attempt to capture the effects of exiting refractions in
our materials.
Our implementation first makes a preliminary pass which renders
the back faces of refractive objects, writing their world normals
and camera depth to textures. In our case, we also need to write
the roughness of the back faces.
The front faces of refractive objects are then rendered. As we
know the direction from the camera to the surface, the normal of
the surface, and location of the surface for a given fragment, we
can compute the exact behavior of the entrance refraction using
the vector equation derived from Snell’s law. The second exiting
refraction, however, cannot be as exactly computed, as we do not
know the exact location nor normal of the surface where the
“light” vector will exit the object. Wyman proposes estimating the
point of exit by estimating the length the refracted vector must
travel by linearly interpolating between the distance, , a vector𝐷

𝑑
would travel if it had not refracted at all and the distance, , a𝐷

𝐼
vector would travel if it had completely refracted, such that the
refracted “light” vector is pointed in the exact opposite direction
of the surface normal. The distance, can be determined by:𝐷
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We query by performing screen-space projection𝐷𝑒𝑝𝑡ℎ
𝑏𝑎𝑐𝑘

sampling to retrieve the depth value that was stored in the
preliminary rendering pass.



is precomputed using ray-tracing at the vertices of refractive𝐷
𝐼

objects. For each vertex, a ray, which can detect collisions with all
the triangles of the mesh, is cast in the opposite direction of a
vertex normal. The distance traveled by the ray until it strikes a
triangle of the object is stored into the original vertex. Under the
assumption that refractive objects are rigid-bodies and will not
under-goes deformations, we only need to calculate these 𝐷

𝐼
distances once.
We interpolate between these two distances, and , using the𝐷
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With this distance, we estimate the point of exit, , which we𝑃
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then use as the world position for another screen-space projection
to query the normal to refract by for the exiting refraction. We use
this twice refracted directional vector to sample our cubemaps.𝑅
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4.2.3 Refraction Difficulties
4.2.3.1 Preliminary Texture

Figure 5: Back face normals from the preliminary rendering pass,
rendered onto the front faces using screen-space texture
projection.
A considerable amount of time was spent debugging construction
and use of the preliminary projection textures during the
preliminary rendering pass. The images in Figure 5 are some
intermediate debug renders which output the normal values in the
preliminary texture onto the front faces of the object.
4.2.3.2 Scaling
While simply storing the scalar distance from a vertex to the other
side of an object was sufficient for Chris Wyman’s
implementation, in a game engine, objects can be scaled at
runtime and can be scaled in non-uniform ways. To achieve
interactive performance, it is not possible to recompute the
internal distances by ray-tracing again whenever a transparent

object is rescaled. Instead, we store a vector equal to the position
struck by a vertex’s casted ray subtracted from a vertex’s position.
While this does increase the amount of data we must store in each
vertex, we can transform the “distance vector” by the world space
matrix of the object (and thereby its scaling). Computing the
distance from the transformed vector to an origin vector (0,0,0)
transformed by the same matrix gives us an internal distance
which adjusts with scale in an efficient manner.
4.2.3.3 Total Internal Reflection (TIR)

Figure 6: Refractive sphere with IOR 1.5 with fragments for
which TIR occurs highlighted in red (left) and refractive sphere
with IOR 1.5 (right).
When a ray exits a more refractive medium into a less refractive
medium, there is a critical angle threshold (between the normal of
the surface and the direction of the ray) where the ray refracts so
drastically that it does not exit the object. This phenomenon,
called Total Internal Refraction, is represented in the vector
refraction equation when K in the refraction equation is less than
zero:
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< 0𝐾 =  1. 0 −  (𝑟𝑎𝑡𝑖𝑜 *  𝑟𝑎𝑡𝑖𝑜 *  (1. 0 −  𝑑𝑜𝑡(𝑁,  𝐼)2)) 
Since we model “light” vectors “backwards” (from the camera
into the scene), this is a difficult issue to resolve as in cases where
TIR occurs we cannot model the exiting refraction. We
compensate for this by only using the first entering refraction.
This first refraction will never contribute to Total Internal
Refraction, as it is a refraction caused by entering a less refractive
medium (air) into a more refractive medium. This is not an ideal
solution and causes very noticeable artifacts, see Figure 6. It is
also noteworthy that our implementation of refraction seems to
exacerbate this issue of Total Internal Refraction; while
ray-tracing can also fall victim to TIR, it occurs more noticeably
and at lower indices of refraction for our rasterization method than
it does in our ray-tracing implementation, likely due to errors,
minor and major, in our estimation of the exit location of our
“light” vectors.



5. RESULTS
5.1 Main Results

Figure 7: Bunnies with custom material (left), marble material
(middle), rusted iron material (right).

Figure 8: Bunnies with steel material (left), wood material
(middle), and stone material (right)

With our work, we are able to intuitively model arguably
convincing real world materials such as the marble and rusted iron
materials seen in Figure 7, the stone and steel materials seen in
Figure 8, and the frosted glass materials seen in Figure 9, by
utilizing different texture maps and material parameters.

Figure 9: Frosted glass material
Our reflection and refraction implementations model many of the
properties of real reflective and refractive objects, such as the
inversion of light captured by a sphere and the increasing intensity
of refraction when a surface is viewed from an angle, illustrated
by Figure 10.

Figure 10: Refraction cubes of IOR 1.15. Cube viewed from the
side (left), and cube seen dead-on (right), resulting in minimal
visible refraction.
While some of these results are very appealing, there are some
meshes for which we’ve failed to produce realistic materials. For
example, due to total internal reflection and the likelihood that
more than two refractions will occur for objects, we’ve failed to
produce convincing results for refractive toruses, see Figure 11. A
key goal of this project was to enable use of these materials on
arbitrary meshes, but as it stands meshes of surface topology of
genus greater than zero are likely to produce poor results for
refractive materials.

Figure 11: Refractive Torus at IOR 1.2. Right shows very
noticeable refraction artifacts near its inner hole.

5.2 Ray-Tracing Results
We implemented reflection, refraction, and cube map
environmental mapping in a ray tracing context in order to verify
our results with a more physically realistic rendering method. As
it was not a priority of our project, our ray tracing implementation
is not able to model roughness, metalness, use normal maps, nor
does it support arbitrary meshes as our rasterization pipeline can.
Comparing our rasterized results to ray tracing results, we found
that for the very simple case of a single sphere without roughness
or normal maps, our implementations for reflection and refraction
performed very similarly in terms of visual results, but the
rasterized image was generated considerably more quickly. Each
of the two ray traced images shown in Figure 12 required seven
minutes and thirty-two seconds to render at an image size of 500
by 500 pixels on a single Intel Core I7 CPU without threading.
The two rasterized images in Figure 13 were both rendered at a
capped framerate speed of one sixtieth of a second (~17
milliseconds).



Figure 12: Raytraced reflection (left) and raytraced refraction
(right) for an object with IOR of 1.3. Each rendered in 7 minutes
and 32 seconds.

Figure 13: rasterized reflection (left) and rasterized refraction
(right) for an object with IOR of 1.3. Each rendered in 17
milliseconds.
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