Rendering Opalescent Materials using Photon Mapping and Ray Tracing

Daniel Janikowski

Abstract

This paper describes a method for representing opalescent ma-
terials in a semi-accurate and efficient way to allow for fast
rendering via standard ray tracing along with photon mapping.
Opalescent crystals display a wide array of very bright, nearly
emissive colors. While the crystals can be quite thick, their
opalescent layers are usually only fractions of a millimeter
thick. To efficiently represent such a structure, a simple polyg-
onal face with a texture a normal map can be used to create a
realistic rendering. The microstructure of opal is well approx-
imated by the normal map while the texture provides the color
for each patch.

1. Introduction

Ray tracing has come such a long way allowing for increas-
ingly accurate renderings of real-life phenomena. Opalescence
is an example which seems to have been overlooked leaving
room for improvement. With the phenomena resulting from a
combination of several complex interactions, producing an ac-
curate model may seem like a difficult task, however, this may
not be the case. Opal crystals produce their magnificent color
because of their dense micro-structure of silica spheres. These
spheres settle and form large structures called photonic crys-
tals. These crystals can be thought of as thin sheets of varying
thicknesses and orientations. Taking all this into account, tex-
tures are a perfect, efficient choice for storing such information.
Sampling textures can be done incredibly quickly by modern
computers and so storing these two compoenents in a normal
and texture map seems like an obvious choice. By producing a
normal map which replicates the semi-random structure of the
photonic crystals, photon mapping and ray tracing can be used
to replicate the glinting and ’play of color’ that one would see
while looking at an opal.

1.1. Previous Work

With opal containing such complex internal structure the most
obvious approach to model it would be to generate an approxi-
mation using procedural modeling. However, to obtain a realis-
tic result would require a large number of surfaces causing very
poor performance from most naive ray tracing algorithms. Effi-
cient volumetric data structures would need to be implemented
in order to reduce the time spent looping over the geometry to
determine ray intersections.

A previous method to render opal and its ’play of color’
properties was put forth by Imura et al. [1] where they took
a similar approach to the one described above. Their attempt
divided the volume of the provided model and randomly filled
it with geometry called ’clusters’. Each cluster was randomly
placed within the model up to a count such that the cluster den-
sity matched real opal. The clusters had properties such as color,
size, and orientation. Each cluster is assumed to have uniform
density which allows them to have the same reflectance proper-
ties.

Of course, such a representation hits some of the same ef-
ficiency issues as discussed earlier. Although, the model is 3-
dimensional and clusters are created within the entirety of its

volume the typical flat shape of opals results in renderings that
do not show off this depth. This leads to the trivial simplifica-
tion of storing the same information within 2-dimensional tex-
tures.

2. Ray Tracer

My implementation for ray tracing began with the final submis-
sion code for homework 3. My first goal was to implement re-
fraction since much of the material within an opal is silica which
is mostly transparent. I quickly realized a large portion of the
algorithm was unnecessary such as multi-sampled shadows and
glossy looking material. This combined with the knowledge of
Monte-Carlo path tracing resulted in a complete rewriting of
my ’traceRay’ function. This reduced the number of arguments
and greatly simplified the recursive tracing function. Shadow,
reflection and refraction rays are now always single samples
however higher quality results can be achieved by increasing
the number of ’anti-aliasing’ rays. The general recursive trace
ray function proceeds as follows:

Algorithm 1 Recursive Trace Ray

1: procedure TRACERAY (ray, hit, bounce)

2: intersect = CastRay(ray, hit)

3 if lintersect then

4: return background

5: end if

6 if hit.material == diffuse then

7 color += ComputeDiffuseColor(hit.coords)
8

: end if
9: color = [0, 0, 0]
10: if hit.material == reflective then
11: color += TraceRay(reflect, nhit, bounce+1)
12: end if
13: if hit.material == reflectiveAndRefractive then
14: ratio = CalcFresnelRatio(norm, ray.dir, iorl, ior2)
15: color +=ratio * TraceRay(reflect, nhit, bounce+1)
16: refractColor = TraceRay(refract, nhit, bounce+1)
17: color += (1 - ratio) * refractColor
18: end if
19: if hit.material == opal then
20: color += OpalColor(hit.coords)
21: end if
22: return color;

23: end procedure

The logic for computing the color of a diffuse hit simply follows
the Phong lighting model:

C = CE—i—CL*CD*0059+CL*Cs*(cosé')loo*cosﬁ (1)

C Surface color

Cg Emitted surface color

Cr Light color illuminating current surface
Cp Diffuse surface color

Cs Specular surface color

0 Angle between light and surface normal
0 Angle of ideally reflected light ray

If a surface has a non-zero reflective component then this diffuse
color is summed with a recursive call to the TraceRay function
using a ray reflected about the surface normal from the direction
of the previous incoming ray.

2.1. Material Properties and Refraction

To handle intersection with transparent materials, logic had to
be added for the calculation of the Fresnel ratio along with the
direction of refraction rays. This logic would be very similar to
that of the reflective rays however these needed to know which
side of the face was being intersected. All models I used con-
tained a version of an intersection function which provided the
direction of the surface normal at any point. The ray direction is
dotted with this surface normal to determine which side of the
face the ray was hitting.

The homework 3 code provided a basic material class. Each
model within the scene had an associated material object con-
taining the following properties: diffuse/texture color, reflec-
tive color, emitted color. To account for refraction, variables for
both the index of refraction and refractive color had to be added.
Handling refraction proceeds as follows:

Algorithm 2 Refraction

: cosi = Dot(ray.direction, normal)
:iorl = 1.0
ior2 = hit.material.ior > Index of refraction of the material
: if cosi < O then > Ray intersects front side of face
cosi = cosi * -1.0
iorRatio = iorl / ior2
end if
: if cosi >= 0 then
normal = normal * -1.0
iorRatio = ior2 / iorl
Swap(iorl, ior2)
: end if
: ratio = CalcFresnelRatio(normal, ray.direction, iorl, ior2)
. if ratio j 1.0 then
refractDir = RefractDir(cosi, iorRatio, ray.direction,
normal)
16: refractColor = hit.material.refractiveColor *
17: TraceRay(refract, nhit, bounce+1)
18: end if
19: continue steps of previous algorithm

_—
S B AR A R

— e
[SIS

The first part of the logic checks to see which side of the face
the ray intersects. To handle a ray coming from within a volume
and hitting the back face, the indices of refractions are simply
swapped to get the proper ratio. Fresnel’s equation is used to
get the ratio of reflected to refracted light. As the incident view-
ing angle to the surface of a transparent material increases the
amount of light reflected also increases. If there is some amount
of light being refracted across the surface then the direction of
the refracted ray is computed using the following formulas:

Figure 1: Surface normal vector (red) changing direction ac-
cording to normal map respective to intersection point of inci-
dent ray and face.

k=1.0—rr? % (1.0 — cosi?)
if (k< 0) Vg =rrVi+ (rr*cosi — Vk) x Vy

Where rr is the ratio of indices of refraction, V7 is the incident
ray direction and Vi is the surface normal.

A further extension I made to the material class was adding
an enumerated type which represented the class of material:
light, diffuse, reflective, reflectiveAndRefractive, opalescent.
The material type was decided during the materials creation
where depending on the magnitudes of the color types (i.e.
emitted color or diffuse color) a material property was given.
This removed the need for unnecessary logic within the ray trac-
ing functions.

2.2. Opal Material

As discussed previously my idea to efficiently represent the
photonic crystals within an opal was to store the crystal face
normals and colors within texture files. This made the same
presumptions as stated in [1]. A further assumption was that
the thickness of the crystal layer was negligible as the cloudi-
ness and size of the stone itself results in a uniform looking
depth plane of color.

Since the material class already contained a variable to store
an image to represent the color of a surface, I extended this by
adding variable to store the normal map texture. This variable
would only be used if the material type was set to be opal. With
this the normal of the surface could be computed anywhere sim-
ply by sampling the color at the point from the texture file. To
convert the given color to a direction I used the standard method
where each color channel is mapped to a given axis. Assuming
color values are provided in a range from 0 to 255 then red is
mapped to -1 to +1 on the x axis, green is mapped to -1 to +1
on the z axis (since OpenGL considers the vertical direction to
be the y axis) and blue is mapped to 0 to 1 on the y axis. A vec-
tor is then created with these values, normalized and returned to
represent the normal at that point.

Figure 3: Example normal map (left) wavelength/texture map
(right).

To test this implementation I used a simple normal map
containing a hemisphere. As seen in Figure 1 when the inci-
dent ray (green) moves across the surface the normal direction
(red) also changes even though the face is planar.

My method of interpreting the color at an intersection point
was derived from the way in which photonic crystals function
in real life, with some simplifications. The structure of an opal
photonic crystal is made of small silica spheres on the order of
a few hundred nanometer. That size is also roughly the scale
of the wavelengths of visible light. Thus, when photons enter
the crystal they either bounce off the surface of the spheres or
pass down to a further layer then reflect. As the light passes up
and down between the layers a combination of diffraction and
interference results in certain wavelengths being amplified. In
reality these crystals can produce a variety of colors based on
the viewing angle due to the chaotic nature of the crystal layers.
I simplified this by assuming each crystal was regular meaning
only one color would be visible. This is also the assumption
made from the 2003 opal paper [1] and can be seen in the real
experiment done by Gao et al. [2] in Figure 2.

To encode this I thought of using the normal map, since
this already defined the crystal boundaries, then have a color
texture made from the normal map. Since real photonic crys-
tals have an associated wavelength I chose to simply map the
visible spectrum (380 < A < 780) down to the range 0 to 1

encoding them as grey scale values. For rendering, this process
is done in reverse. Figure 3 shows an example of a crystal-like
normal map along with its grey scale color map. With this a ray
intersects the plane, the texture is sampled, the greyscale value
is extracted and finally converted to RGB. To convert to RGB 1
used a piece-wise approximation function.

3. Photon Mapping

Rendering the "play of color’ of opal requires drastic intensity
changes dependent on the incident angle to the internal struc-
tural faces. The effect is amplified by refraction through the
transparent outer layers of opals. This requires the use of global
illumination techniques of which I chose to use photon map-
ping, specifically based on the work by Jensen [3]. Once again
I re-used much of the code from homework 3 although I now
had to alter the TracePhoton to match the functionality of Trac-
eRay. For a minor improvement to performance I did not add
photons which have not yet bounced as the ray tracing algorithm
by itself can handle direct lighting. For reflective/refractive sur-
faces I use a Monte-Carlo technique where I use the Fresnel
ratio and a random sample to decide whether the photon should
reflect or refract. From the homework the photon class is able
to store the incident direction. This is useful during the collec-
tion/tracing faze as it allows rays to only accumulate photons
which are deposited on surfaces facing towards the incident ray.
For any material other than opal the photon is stored with its
incident direction.

The color layer within opals is highly sensitive to the view-
ing and lighting angle. As discussed in the work from Imura
et al. [1] preprocessing is done to store the intensity values of
each cluster based on their orientation to the light soruce. When
forward ray tracing is executed and a ray intersects a cluster, the
clusters intensity, incident direction and normal are used in the
Phong model to produce the rendered color. Using this idea,
I store the reflected angle of the photon off the opal surface
within the incident direction variable. Then, when collecting
photons for global illumination I make sure to only collect pho-
tons which reflected directions are within some df of the inci-
dent view ray. The color of the photon is simply multiplied by
the texture color at that location.

4. Parallelization

The major throttling points for such an application are definitely
during ray tracing and photon mapping. The recursive nature
of ray tracing leads to an explosive number of computations.
Using Monte-Carlo path tracing greatly speeds up the applica-
tion while still achieving some of the nice costly visual effects
such as soft shadows. However, parallelization would further
decrease the total render time. I faced two issues while trying to
parallelize the ray tracer. First was that drawing to the screen is
usually impossible to do in parallel as the screen buffer can only
be written to sequentially. Luckily, writing directly to the screen
was not necessary. A sort of OpenGL hack where instead of
drawing directly to screen pixels were instead created as quads.
The algorithm then proceeds by determining its color through
recursive tracing and finally adding this color along with its co-
ordinates to a vector. The information within the vector is then
used to create the quads. This algorithm can be parallelized
although care has to be taken when writing to the vector.

The other more minor issue was that ray tracing is innately
recursive which does not translate well to a GPU. Because of
this I decided to do the parallelization on the CPU as the more
powerful (smarter) cores can more efficiently manage recursion.

The other part of the algorithm to be parallelized was pho-
ton mapping. This is a much simpler procedure as it just scatters
photons into the scene in varying directions. When photons in-
tersect with specific surfaces they are then stored to the spatial
data structure (in this case a k-d tree). Care must also be taken
when adding to this data structure as it is also composed of vec-
tors.

To handle the parallelization I took advantage of the
OpenMP commands for parallelization on the CPU. Firstly, run-
ning the ray tracer scan line loop in parallel ensuring that all
pixel color push backs were encapsulated within a critical block.
Standard vectors are not thread safe and so all push back calls
needed to be handled one at a time. Once a full horizontal line
is scanned then the quad adding algorithm is run to create all the
necessary 'pixels’. A similar procedure is done for the photon
mapping however the loop is done all at once. For the given
number of photons to be traced a loop is done in parallel to
trace all photon paths. Adding photons to the k-d tree is also
done in a critical block since the structure contains vectors at
each branch.

5. Results

For the number of simplifications made to the true model of
lighting interactions with opals the results were very promising.
For the majority of my results I used a very simple scene con-
sisting of a textured ground plane along with an opal textured
plane and a sphere just clipping through the top portion to give
a dome shaped appearance.

Originally, I tried to only use the Phong lighting model with
different amounts of specular reflections in hopes to get a decent
result. As seen in Figure 4 there is too much regularity visible
and the faces do not produce that shine which is so characteristic
of opal. The normal/color maps for this image are the same as
seen in Figure 3. I modified the color mapping to span mainly
the blue and green part of the spectrum.

Once photon mapping was implemented I saw a great im-
provement in the results. I decided to use a much more detailed
normal/texture to see if I could get a better play of color which
can be seen in Figure 5. Figure 6 then shows the photon map-
ping results using these two textures. Figure 7 uses the same

Figure 4: Initial result without photon mapping.

textures but with a full spectrum mapping. The main issue with
these is the normal map does not produce enough variation in
color as the angle changes. I also figured out the parameters for
the photon mapping were not optimized as well as the collecting
direction.

I finally found the best configuration of textures and photon
mapping parameters in my final results (Figure 8). I went back
to using the larger crystal normal map from Figure 3 and set my
final number of photons to map to be 5, 000, 000, collecting 15
and only collecting photons within a 15 degree arc of the re-
flected direction. The color changes drastically with smaller
movements in the viewing angle resulting in much brighter
patches.

5.1. Timing Results

Here I consolidated two tables of timing results for both the ray
tracing algorithm as well as for photon map by sequential cal-
culations and with parallelism. All timings being measured in
seconds. All renderings were performed on my personal com-
puter which has a AMD Ryzen 7 3700x, 3.6 GHz, 8 cores and
16 threads.

Ray Tracing: Scene consists of a refractive glass ball over a
textured plane with a singular light source. Scene parameters
are 9 anti-aliasing rays, 1 shadow ray, and a max of 6 bounces:

Window Size | 200x200 | 400x400 | 600x600
Sequential 13.19 71.64 196.13
Parallel 8.97 48.68 137.53

Photon Mapping: Scene consists of the geometry seen in Fig-
ure 8. Parameters include range from shooting 500,000 —
10, 000, 000 photons:

Photon # | 0.5mil | 1 mil | Smil | 10 mil
Sequential 3.94 7.65 | 37.64 | 73.65
Parallel 0.69 1.08 | 4.69 9.24

From the above results we see that the photon mapping very
nicely parallelizes in comparison to the ray tracing. Both the se-
quential and parallel methods show a steady linear increase in
computation relative to the number of photons with the paral-
lel method being around 6x faster on average. The ray tracing
algorithm does not parallelize as well exhibiting only about a
50% increase in speed.

6. Future Work

My biggest complaint about the results of this project were the
inaccuracies in the resemblances in normal and color maps. It
would be a better idea to create an algorithm similar to the one
described in [1] but creating a 2D projection of the geometries
into a normal map and color map. The method I used of creating
the grey scale image from the normal map resulted in all faces
of the same orientation having the same color (as seen in Figure
8, as the model is rotated the majority of the red/orange faces
turn green).

Given more time I would prefer to create a more robust and
accurate model including the rendering of translucent materials
for the substance for which the color is suspended in. For this I
would like to work off of Henrik Wann Jensens paper [4]. Also
using more accurate light tracing methods such as full spectrum
ray tracing.

Regarding parallelism I would like to further optimize or
completely rewrite the animation loop in order to have less
wasted time restarting threads to render the image.

7. References

[1] M.Imura, T. Abe, I. Kanaya, Y. Yasumuro, Y. Manabe, and K. Chi-
hara, “Rendering of ‘play of color’ using stratified model based
on amorphous structure of opal,” Digital Image Computing: Tech-
niques and Applications, vol. 1, no. 7, pp. 349-358, Dec. 2003.

[2] W. Gao, M. Rigout, and H. Owens, “Facile control of silica
nanoparticles using a novel solvent varying method for the fabri-
cation of artificial opal photonic crystals,” Journal of Nanoparticle
Research, vol. 18, 2016.

[3] H. W.Jensen, “Global illumination using photon maps,” Rendering
Techniques, pp. 21-30, Jun. 1996.

[4] H. W. Jensen, S. R. Marchner, M. Levoy, and P. Hanrahan, “A
practical model for subsurface light transport,” in Proceedings SIG-
GRAPH 2001, Los Angeles, California, Aug. 2021, pp. 511-518.

Figure 5: Second attempted normal and color maps. Images are produced by rotating the camera around to model by 90 degree
intervals clock-wise.

Figure 6: Photon mapping results using Figure 5 textures. Images produced by panning over the top of the model.

Figure 7: Photon mapping results using Figure 5 textures.

Figure 8: Photon mapping results using Figure 3 textures. Model is rotated by roughly 20 degrees counter-clock-wise between each
image.

