
Rendering Portals

Reed Metzler-Gilbertz

Rensselaer Polytechnic Institute

Figure 1: A scene with several recursive portals

Abstract
In this paper, I describe a method for accurately rendering interac-
tive planar portals, as well as a method to detect and execute seam-
less teleportation of a camera from a portal to its destination. I also
briefly provide some examples as to how portals can be used to
create illusions of non-euclidean geometry.

1 Introduction
This project focuses on a method for accurately rendering planar
portals in a traditional, OpenGL derived rendering environment. A
portal is a surface within a scene that acts as a “window” into an-
other part of the scene. Rendering portals using standard, rasterized
rendering can be very tricky, as multiple render passes need to be
carefully executed in order to create the illusion that a hole leading
to some other area has been cut into the world. There are several
challenges and special cases that the rendering method must also
be able to handle in order to maintain the believability of the effect,
such as portal recursion (seeing one portal through another portal).

In addition to rendering portals, I explore how the portals them-
selves can be made “functional”, meaning the viewer is able to
seamlessly walk into the area that is being rendered on the surface
of a portal. Both the rendering of the portals and the method of tele-
porting the player between the different areas a portal divides must
ideally be subtle enough that the viewer may be unaware they have
even moved through a portal at all.

This project was implemented using THREE.js and WebGL, and
runs in any modern web browser that supports WebGL.

2 Related Work
Much of the prior academic work on rendering portals relates to a
technique known as portal culling, a method that divides a scene up
into connected “cells” separated by portals. This partitioning of the
scene can then be exploited to reduce the amount of geometry that
needs to be rendered. [Aliaga and Lastra 1997] presents a technique

that renders the visible geometry in cells adjacent to the viewer us-
ing a texture displayed on the portal’s surface. This use case for
portals, however, is not very relevant to this project as that method
sacrifices accuracy of the geometry rendered to the portal in favor
of performance, whereas my goal is for portals to render geometry
with as much accuracy as possible.

[Lowe and Datta 2005] presents a generalized method for rendering
non-planar and non-convex transformative portals. My method was
heavily inspired by their algorithm, with some of the main differ-
ences being due to the fact that I am only rendering planar portals.

Video games are another area where portals have made several ap-
pearances. The Portal series by Valve is one example of a set
of games based around interactive portals. Some of the details
and challenges associated with the portal system created for those
games are discussed in a lecture for Harvard’s CS50 course given
by two developers who worked on the games [Kircher and Kohli
]. Much of that talk is focused on how they managed to accu-
rately simulate physics through portals, however this is beyond the
scope of my project and not necessary for the results I’m hoping to
achieve.

3 Portal Basics
It’s important to have an intuition as to how a portal actually works.
Imagine you, a camera, are in a scene with two portals, portal A and
its destination, portal B. This is represented in Figure 2a, where the
main camera (you) and its view frustum are drawn in blue. On the
other end of portal B there is a green cylinder. As you look through
portal A (which remember leads to portal B) what you see dis-
played on the surface of portal A can be rendered by another cam-
era view, whose frustum is drawn in red. The world transformation
matrix for this other camera, TD , is calculated as follows:

TD = TB ·R · T−1
A · TC (1)



(a) Main camera perspective (blue) and portal A’s destination camera perspec-
tive (red)

(b) Steps to convert main camera transform TC to portal A’s destination camera
transform TD

Figure 2

In this formula, TC represents the original camera’s world trans-
formation matrix. T−1

A represents the inverse world transformation
matrix of portal A and TB represents the world transformation ma-
trix of portal B. Finally, R represents a rotation matrix that applies
a 180 degree rotation.

In order to make this formula more intuitive, Figure 2b splits it up
into each of its three matrix multiplications. First T−1

A is multiplied
by TC in order to get the transform of the original camera relative to
portal A, M1 (drawn in green). Next, R is multiplied by M1 to get
M2 (drawn in blue), which rotates the transform of the camera by
180 degrees relative to portal A, placing the camera locally behind
portal A (exactly opposite of where it was relative to portal A origi-
nally). Finally, we multiply TB by M2 to apply the transform of the
camera local to portal A to portal B, giving us the final transformed
world matrix, TD (drawn in red relative to portal B).

4 Rendering
The rendering algorithm I have come up with is derived from the
method presented by [Lowe and Datta 2005]. One of the key differ-
ences is that the algorithm I present does not split the scene up into
individual cells, as is common when using portals, since partition-
ing a scene in such a way can potentially save lots of unnecessary
render calls in large scenes with many portals. However, it would
be straightforward to extend my method to support individualized
cells, as currently it essentially just treats the entire scene as one
cell.

The rendering of the scene, including the portals, is handled within
the render() function. As input, the function takes the camera world
transformation matrix and camera projection matrix that will be
used within the function to render the current level of recursion,
as well as an integer, recursionLevel, that represents the current
recursion depth.

4.1 Recursive Portals
Before walking through each part of the function itself, it’s im-
portant to understand the basics of how recursive portal rendering
works. Recursive portal rendering arises when a portal can be seen
from the destination of another portal (see Figure 8). Each level of
recursion renders the contents that will be displayed within the por-

Figure 3: Values in in stencil buffer at each level of recursion

tal frame of the previous level. So the base recursion level of zero
renders the scene from the main camera’s point of view, a recursion
level of one renders the scene from the destination of each portal
visible from that main camera, a recursion level of two renders the
scene from the destination of each portal visible from each of the
level one destinations, and so on. The challenging part is, how can
the data that has been rendered in previous levels be preserved when
recursing into a portal’s destination and rendering again from that
perspective? This is where the stencil buffer comes in. Since each
subsequent level of recursion will always be contained within the
frame of a portal in the current level, we can increment the stencil
buffer within the portal’s frame prior to recursing into that portal’s
destination point of view. Then, rendering from that perspective, we
can use the stencil buffer to ensure that we only render within the
portal’s frame, defined for us by the previous level. Since the sten-
cil buffer starts from zero, we associate the number stored within
the stencil buffer with the current level of recursion (see Figure 3),



Algorithm 1: render()
Input: Camera’s world transform matrix, camera’s projection matrix and current recursionLevel

/* Render all of the portals into the depth buffer (only in areas where stencil value ==
recursionLevel) */

Enable stencil test and depth test
Disable writing to color and stencil buffers
Enable writing to depth buffer
Set depth function to succeed for values less than the current value
Set stencil function to pass when the stencil value equals recursionLevel
Draw portals

/* Render rest of scene normally (only in areas where stencil value == recursionLevel) */
Enable writing to color buffer
Draw scene geometry
if recursionLevel == maxRecursionLevel then

return

foreach portal in portals do
if !(cameraFrustum contains portal) then

continue

/* Increment stencil buffer values within the visible portal frame */
Disable writing to color and depth buffers
Set depth function to only pass for values equal to currently stored depth value
Enable writing to stencil buffer
Set stencil function to pass in areas where the stencil value equals recursionLevel
Set stencil operation to increment when both depth and stencil tests pass
Draw portal

/* Clear depth buffer within the portal frame (where stencil buffer was just
incremented) */

Disable writing to stencil buffer
Enable writing to depth buffer
Set stencil function to pass when the stencil value equals recursionLevel + 1
Draw fullscreen quad

/* Recurse from portal destination point of view */
Call render() with portal destination transform

/* Cleanup the modified stencil values by decrementing them within the portal frame */
Disable writing to color and depth buffers
Disable depth test
Enable stencil test and writing to stencil buffer
Set stencil function to pass in areas not equal to recursionLevel + 1
Set stencil operation to decrement when stencil test fails



only drawing where the two are equal. This allows for us to recurse
up to a maximum depth of 255 (assuming an 8-bit stencil buffer),
which is more than enough in our case.

4.2 Render function
Now for the complete rendering function. The first step is to render
each of the portals in the scene to the depth buffer, making sure to
enable the stencil test and ensure that any pixels where the stencil
value does not equal the current recursion level are not drawn to.
Next, we render the scene to both the depth and color buffers, still
making use of the same stencil test.

Now, we loop over each of the portals. For each portal, we start
by checking if the portal’s world bounding box intersects with the
frustum of the camera perspective we are currently rendering from.
If not, the portal is not visible and we can skip it and continue onto
the next one. Otherwise, we start by first incrementing the val-
ues within the stencil buffer everywhere within the portal’s frame.
This can be done by drawing the portal with the stencil operation
set to only increment the value when both the depth and stencil
function pass and the depth function set to only pass for fragments
with a depth value equal to the value currently stored (which corre-
sponds to the depth values for the portals we rendered at the start of
the function). After that, we need to clear the depth values within
the portal frame (which are currently set to the depth of the portal
frame itself) in preparation for our recursive render into that por-
tal’s destination viewpoint. Although there is no direct OpenGL
method for selectively clearing the depth buffer (other than through
the use of the scissor test, which only works for rectangular areas)
we can accomplish this by drawing a full-screen quad that has a
depth value of 1.0, using the stencil test to ensure it only draws
to areas within the portal frame. Next, we recurse into the render
function again, adding 1 to the recursion level and calculating new
camera world and projection matrices that will be used to render
from the portal’s destination. Once that recursive call has returned,
we need to cleanup the stencil values we incremented previously
so the next portal in the loop won’t overwrite what we just ren-
dered within the current portal’s frame. This can be done by setting
the stencil function to fail anywhere with a stencil value equal to
recursionLevel+1, setting the stencil operation to decrement on
failure of the stencil test, and then drawing this portal one last time.

4.3 Run-time and Optimizations
The naive run-time of this rendering method is O(nr) where n is
the number of portals and r is the maximum recursion depth. There-
fore, it’s obviously extremely important to avoid rendering unneces-
sary portals. My method implements basic frustum culling to avoid
rendering portals that are not within the camera’s view frustum.
This could be further improved by shrinking the frustum so that
its fit around the bounds of the portal frame when rendering from a
portal’s destination. Even with this improvement, however, frustum
culling does not account for the case where portals are within the
view frustum but occluded by some other object. [Lowe and Datta
2005] handles this case using the GL NV occlusion query exten-
sion to check whether or not any pixels were actually drawn for a
portal, allowing portals that are occluded to be detected and culled.

5 Oblique View Frustum
One problem that hasn’t yet been addressed is the issue where an
object is between the destination portal frame and the destination
camera perspective. This is illustrated in Figure 4, where a viewer
is looking through portal A, seeing what’s on the other side of portal
B. The purple box behind portal B is visible from the destination
camera perspective and therefore would incorrectly show up when
we render from that perspective, when in reality anything behind
portal B should be cut off.

Figure 4: Example where a purple cube blocks the destination view
frustum (drawn in red). The adjusted near plane, aligned to the
plane of portal B is represented by the red line. Anything behind
the red line should not be drawn.

There are multiple ways that this problem can be addressed. [Lowe
and Datta 2005] made use of dual near and far depth buffers, where
any fragments closer than those defined in the near buffer would be
culled while the far depth buffer acted as the normal depth buffer.
This defined a sort of depth range that could be used to prevent this
problem by setting the near buffer to contain the depth of the portal
surface. This is also what allows for portals to be of non-planar
shapes in their method. However, as OpenGL does not support
the use of two depth buffers by default, this requires some clever
use of shadow map textures and careful management of the near
and far depth values in order to use this approach. As the portals
in this project are strictly planar, it seemed unnecessary for me to
implement that approach.

For planar portals, this problem can also be solved using an oblique
view frustum. With a method outlined in [Lengyel 2005], we can
generate an oblique view frustum whose near clip plane is aligned
with the plane of the portal. Therefore, everything that is behind
the plane of the portal will be clipped. This is illustrated in Figure
4, where the red line aligned with portal B represents the new near
plane of the view frustum.

Figure 5: Near plane offset from portal frame



There are some problems that arise when using the oblique view
frustum method, however. The first issue stems from the fact that
the near clip plane of the oblique frustum is exactly aligned with
the plane of the portal, resulting in z-fighting with geometry that is
placed very close to the portal frame. This is especially an issue
since the near clip distance of the camera needs to be set very low
for reasons that will be explained in the teleportation section, fur-
ther reducing the precision of the depth buffer. I worked around this
issue by offsetting the near clip plane of the oblique view frustum
so that while it’s still parallel to the portal plane, it’s placed some
offset distance behind it (see Figure 5).

The other issue is that when the camera is very close to the aligned
near clip plane of the oblique view frustum, depth precision again
causes flickering/z-fighting. In order to mitigate this problem, the
offset value must be able to dynamically scale down as the dis-
tance between the camera and the offset near plane of the oblique
frustum gets to be very small. The offset value cannot be reduced
indefinitely, however, as it cannot extend past the original portal
frame. Therefore, my solution was to switch back to using the nor-
mal, non-oblique view frustum whenever the scaled offset value
is less than some cutoff value.

The tradeoff for using an offset is that one must be cautious not to
put any geometry too close to the portal, as if it is within the offset
distance, it won’t be clipped by the oblique frustum, and will show
up in the portal render.

Figure 6: Portal colliders used for teleportation

6 Teleportation
The method that I use to implement portal teleportation for the main
viewer camera is straightforward and seems to work well as far as
I can tell. Each portal is given a box collider that extends slightly
in front and slightly behind the surface of the portal (shown in Fig-
ure 6). To detect a valid portal teleport, we perform two checks for
each portal each frame. First, we compute the dot product of the
portal’s normal vector and the main camera’s position vector rela-
tive to the portal. We also check to see if the camera is within the
portal’s collider. Then we compare the computed dot product to the
dot product from the previous frame. If the sign of the dot product
has changed, and if the camera was within the portal’s box collider
either this frame or the previous frame, we know that the camera
has crossed the surface of the portal and should be teleported. It’s
important to note that if the camera has a very high velocity and the
box colliders of the portal are not sufficiently extended, it’s possible
that the camera could pass through the portal surface without com-
ing in contact with the collider, resulting in no valid teleportation
being detected.

Once a valid teleport has been detected, performing it is as simple
as replacing the current world matrix of the main camera with the

portal destination world matrix (the same one used when rendering
from the destination’s point of view). In order to prevent the pos-
sibility that a teleport could be registered immediately again after
the initial teleport is completed (leading to the camera being con-
tinuously teleported between the two portals) the stored dot product
sign and collider data for the destination portal are cleared, mean-
ing that an additional frame will need to pass to restore them before
a valid teleport from that portal will be able to occur.

One issue that can diminish the believability of the teleportation
effect is the camera’s near plane clipping the plane of the portal. As
my implementation represents portal geometry using planes, when
the camera gets very close to the portal, the near plane can clip a
portion of the portal’s frame. What this means is that sometimes
when walking through a portal, this will cause a brief flicker where
the viewer is able to see the geometry behind the portal. Reducing
the near clip distance of the camera view frustum can greatly reduce
how often this occurs, but reducing the distance too much results in
issues with depth buffer precision, and the clipping issue cannot be
completely resolved with this method alone. One potential solution
might be to render the portal as a very thin box instead of a plane.
However, this requires additional adjustments to be made to the
teleportation system, and therefore was not something I was able to
try and implement in the time frame of this project.

7 Non-Euclidean Geometry
Portals can also be used to create some interesting illusions of non-
euclidean geometry. Figure 9 shows two images of the same tunnel,
one from the side and one from the front. The tunnel appears to be
short on the outside, yet is very long on the inside. Other exam-
ples could be a house that has fewer rooms than it appears to, a
room that actually contains many rooms, a staircase that loops in an
impossible way, etc. The list goes on.

The importance of lighting really stood out to me while playing
around with making some of these illusions. As they usually in-
volve sneakily stitching together two different spaces through the
use of portals, the way the lighting within the scene affects those
two connected spaces is often inconsistent, diminishing the believ-
ability of the illusion. I would imagine that a style of rendering that
uses simpler shading would make this much easier to manage.

8 Results
Overall, the resulting portals in my final implementation are ren-
dered accurately, supporting recursion up to a user-specified depth.
The portal teleportation system works very well, despite the rare
flicker as a result of the near plane clipping the plane of the portal
frame.

Although the solutions I presented to the issues surrounding depth
buffer precision do a good job of preventing most artifacts and z-
fighting, these issues become apparent again in portals that are far
away from the camera. For small scenes this is not much of an
issue, however this would certainly effect the quality of portals in
larger, more open scenes.

The performance is good, and runs at an acceptable frame rate in a
fairly demanding scene, however, there is certainly plenty of poten-
tial for more optimization, as discussed in the rendering section.

9 Future Work
There is still many areas where the rendering method could be fur-
ther improved. As mentioned in the rendering section, frustum
culling would be more accurate and effective if frustums were con-
strained around a destination portal when performing a render from
that perspective. Furthermore, culling portals that are within the
frustum, but blocked from view by another object would also help



to reduce unnecessary renders.

Despite the fact that using an oblique view frustum works for planar
portals, it still may be advantageous to implement the dual depth
buffer used by [Lowe and Datta 2005], as that method may avoid
some of the issues that arise as a result of the portal-aligned near
plane.

Finally, it would be worth looking into ways to avoid the occasional
flickering that occurs when the camera’s near plane clips with the
plane of the portal, potentially through the use of thin boxes instead
of planes as portal geometry.

References
ALIAGA, D., AND LASTRA, A. 1997. Architectural walkthroughs

using portal textures. 355–362.

KIRCHER, D., AND KOHLI, T. Portal Problems - Lecture 11 -
CS50’s Introduction to Game Development 2018. https://
www.youtube.com/watch?v=ivyseNMVt-4.

LENGYEL, E. 2005. Oblique View Frustum Depth Projection and
Clipping.

LOWE, N., AND DATTA, A. 2005. A New Technique for Rendering
Complex Portals. Computer Graphics.

https://www.youtube.com/watch?v=ivyseNMVt-4
https://www.youtube.com/watch?v=ivyseNMVt-4


Figure 7: A scene containing one pair of portals

Figure 8: Portal recursion with a recursion depth of 20



(a) Side view of tunnel (b) View from the front of the tunnel

Figure 9: A tunnel that’s longer on the inside


