Customizable Stereogram Creator

Sam O’Connor (oconns5@rpi.edu) and Sophie Richards (richas3@rpi.edu)

Figure 1: Stanford Bunny Custom Autostereogram

ABSTRACT

We present a customizable system that allows

for users to create personalized autostereograms. We
provide options for the construction of random-dot
stereograms and custom pattern stereograms,
alongside personalized user input for meshes, image
size, oversampling, and eye convergence distance.
This system outputs a single-image optical illusion
wherein the user must adjust their vision to
experience the appearance of three dimensions and
depth.

Keywords: autostereogram, optical illusions,
random-dot stereogram, stereoscopy, stereoscope,

stereogram

1. INTRODUCTION

1.1 Background

Stereoscopy is defined as a technique for

generating the illusion of three dimensional depth

and space using two dimensional images or video,
and it’s something that’s been researched for
centuries. Its earliest documentation dates back to
the early 19th century - in 1838, Sir Charles
Wheatstone made note of the fact that the left and
right eyes see slightly differently when it comes to
perspective. Wheatstone discovered that “[there is]
no difference between the visual appearance of an
object in relief and its perspective projection on a
plane surface...” [6] This physiological discovery
led him to create the Wheatstone stereoscope. These
were novel devices that contained two versions of
the same image (as seen by each eye), and used
reflective mirrors and refractive prisms to combine
the two images into a composite. This composite
was dubbed a stereogram, and within it contained
the mirage of three dimensions; some elements of
the picture would appear closer to the eye than
others. These magical scopes are seen as some of the
earliest forms of virtual reality, and stereoscopic
technology has become much more commonplace

nowadays. Modern examples of this are 3D movies



(popularized by studios like IMAX), and virtual
reality goggles, like the Oculus Rift and the HTC

Vive.

1.2 Related Work

As the computer graphics community began to
grow, computer-generated stereograms became an
area of interest in the late 1970s. Morland [1]
produced the first known computer-generated
stereoscopic space, using the GENIGRAPHICS
system created by General Electric. From there, the
stereogram niche was given room to blossom.

Around the same time, Christopher Tyler and
Maureen Clarke were working to combine the
pre-existing theories regarding wallpaper
stereograms and random-dot separate-image
stereograms. By 1990, Tyler and Clarke [5] had
discovered the computer’s ability to combine two
stereograms created with random black and white
pixel values, and created the first random-dot
autostereogram. These autosterecograms were able to
create the illusion of space like previous
stereograms, but with the distinct difference of being
amalgamated into one singular image. The person
viewing the image would have to do the work of
stereoscope by unfocusing their eyes to see the
hidden image. Their work would go on to inspire a
series of books called Magic Eye, which featured
autostereograms composed of custom patterns and
colors rather than black and white dots. Magic Eye
serves as the main inspiration for our

implementation.

2. AUTOSTEREOGRAMS

Our implementation allows for the creation of
two different types of autostereograms: random-dot
stereograms (RDS), and custom patterned

stereograms.

2.1 Random-Dot Stereograms (RDS)

To create random-dot stereograms, we provide a
recreation of the algorithm developed by Thimbleby
et al. [4]. We chose to base our work off of their
algorithm due to its high performance and its
symmetry regarding left eye and right eye bias. It
produces little to no artifacts, and for its minimal
drawbacks (depth stairs), we provide the solution of
oversampling, described in Section 4.1 of this paper.

The random-dot algorithm cannot work without
one argument: a two dimensional depth buffer with
defined dimensions of the width times the height of
the window. This buffer contains values from 0.0 -
1.0, and said values correspond to depth information
about the inputted mesh in relation to the camera’s
position and perspective. Once this is obtained, pixel
values are generated in scan-line order. At each pixel
location, the stereoscopic separation is calculated
using the depth buffer by the following formula:

separation = (1 — p xz) * e/ (2 — p * 2))
where p is the fraction of viewing distance, z is the
depth buffer value, and e is the eye separation.
separation is then rounded to the nearest whole
number. Left and right eye-values are determined

from the separation value by:



left =x, — separation | 2

right = left + separation
where x,, is the x position of the pixel. From there,
we determine if the current point is obscured by a
surface in the foreground, and perform hidden
surface removal. Values to the left and right of the
current x position are checked incrementally to see if
they block the current z value. If the current position
is visible, the /eft and right values are used to
displace the current pixel. Otherwise, it is ignored.
From there, random dots are assigned to the pattern
as a whole. If the pixel has not been displaced, a
random value is assigned. Otherwise, the pixel’s
color is constrained and defined by its leff or right
value. This culminates by compiling all of the rows
of pixels into a two dimensional array of values of
0’s and 1’s. 0’s correspond to a black pixel, and 1’s
correspond to a white pixel. This completes the RDS
implementation, and the array of values is passed to

our image generator.

2.2 Custom Stereograms

Custom stereograms can be differentiated by
their random-dot predecessor due to their distinctive
patterns. These patterns can be any size and can
contain all sorts of shapes and colors. From our
testing, we’ve found that certain patterns work better
than others. Smaller patterns that contain lots of
color variation and “noise” help disguise the
displaced pixels best. Figure 2 and Figure 3 show
the difference between a bad custom pattern and a
good custom pattern, respectively. Figure 2

showcases a notable outline of the Stanford bunny,

while it’s indiscernible what Figure 3 is an
autostereogram of at a glance.

In our implementation, the algorithm is fairly
similar to the random-dot stereogram. We follow the
algorithm laid out by Steer [3], which differs only
slightly from RDS’s. The major difference between
the two relates to the pixel color assignment. Instead
of a random black or white color, the pixel color is
defined by a region of the original pattern image.
The location is determined by the x and y positions
modded by the pattern width and height,
respectively. Another difference is that a two
dimensional array of RGB values is compiled rather
than single floats. This preserves color from the
original pattern. Additionally, the custom pattern is
tiled beginning with the pattern placed in the center
of the image. Previous algorithms for generating
custom patterns begin by creating a stripe of the
custom pattern on one side of the image, and
deriving pixel color values from that untouched
stripe [2]. Our implementation avoids this artifact,

and overall, generates a more pleasing stereogram.

3. IMAGE GENERATION

To generate the resulting image, first the values
from the depth buffer from the modern graphics
pipeline from OpenGL are read from the GPU to the
CPU. Then, said values are passed to the stereogram
algorithm. Next, the resulting values from the
stereogram algorithm are taken, which holds a value
between 0 to 1 for each pixel for RDS, or RGB
values between 0 to 1 for custom stereograms. If
there is no oversampling for the RDS, then the

values will only be 0 for a black dot and 1 for a



white dot; oversampling will add in-between values.
These values are used to set each color of each pixel
of the resulting image to be between 0 to 255. These
pixels are saved as a .ppm file. This file type was
chosen due primarily to the ease of reading and
writing from them. All of the .ppm files have a max
color value of 255, meaning the pixel data for each

color is 1 byte.

4. TECHNICAL ISSUES

4.1 Depth Buffer Precision

There were a few issues that arose from the depth

values. One of these issues was that the values from

OpenGL's depth buffer are not linearized, so the values

had to be adjusted to be linear before being passed to
the stereogram algorithms.

Another roadblock we faced early on was that the
near and far planes were distant from each other
compared to the models that we were loading. This
resulted in stereograms that appeared to be rather flat.
In Figure 4, it resulted in the stereogram having about
three layers of depth. The near and far planes were
brought closer to each other to get a greater range of
depth values from the models. This made our
stereograms appear to have more depth than before.
This can be seen in Figure 5.

Finally, there was the “depth stairs” issue, which
defines when there is a noticeable step between one
layer of depth to another. At first, we thought that
this was the result of the limited precision of the
depth buffer, so we made a frame buffer that had
greater precision for the depth buffer. We used that
to get the depth buffer values, but the resulting

images still had the same amount of depth stairs.
Instead, the reason we were getting depth stairs was
due to the limited resolution of the images we were
creating. All of the images we created were set to be
72 DPI. To get smooth images, they would have to
be approximately 300 DPI [3]. This is impractical
for many reasons; one reason being that a lot of
monitors have less than 300 DPI resolution. Instead,
to get smooth images, we used oversampling. The
oversampling in the stereogram algorithm causes it
to treat the inputted image as a higher resolution
than it actually is, and then averaging the results to
get the desired lower resolution at the end, similar to
antialiasing. This resulted in stereograms that had
less noticeable depth stairs, even though they were
created at 72 DPI. The effects of this oversampling
can be seen by comparing Figure 5 and Figure 6.
Some custom patterns can also hide the depth
stairs as well. The floral pattern from [2] (used in
Figure 2) resulted in smooth stereograms, despite
not being the best pattern due to its color gradients.
The depth stairs in the colorful dots pattern (used in
Figures 3 and 9) are somewhat noticeable, but not as

bad as an RDS with no oversamples.

4.2 Drawing from Custom Images

We ran into a couple of issues when trying to
create the custom patterned stereograms. Namely, the
resulting stereograms had colors not present in the
original image. Additionally, the resulting stereogram
turned out rather skewed and warped, as shown in
Figure 7. This was the result of two things: reading in
the image incorrectly, and disparities with different

parts of the program using row major matrices and



others using column major matrices. For fixing the
image reading issues, we made sure we were reading
things in the right order and setting things to be the
right data type by writing a copy of the image and
making sure that they looked the same. Image reading
was mostly fixed by doing this, with custom
stereograms with no oversampling looking correct.
Custom stereograms with oversampling had noticeable
errors though, with pixels of different colors from the
original pattern appearing around the edges of a depth
layer. This was due to reading in color values in the
.ppm file as a char instead of an unsigned char,
resulting in negative values for colors. This would
cause values that didn't make sense to pop up when
adding and averaging colors together. The reason the
non-oversampled custom stereograms seemed to be
fine was due to the values being cast as chars when
being written to the file, so those color values were the
same as the values in the original image.

The issue regarding row vs. column major
matrices had also turned up earlier in our
implementation, with the depth buffer values being in
opposite orientation compared to the stereogram
algorithms. This resulted in the models in the
stereogram to be rotated 90 degrees compared to their
actual positioning on the screen. Both the depth buffer
and the custom image data were reoriented to match
the stereogram algorithm's orientation, which finally
resulted in stereograms matching the perspective seen
in the viewport window. This was important to us, as
we wanted the stereograms to match the user-defined

orientation of the mesh.

5. CONCLUSION

5.1 Results and Discussion

All of the resulting images were created at 72 DPI,
with an eye separation of about 2.5 inches. These same
values were used in the algorithm by Thimbleby et al.
[4]. The actual separation needed to view these
pictures may be more or less due to the scaling of
these images compared to the original size they were
created at. To account for this, our implementation
allows this variable to be user-defined in the
command-line inputs, with a default value of 2.5
inches.

Our stereogram creator can be used with a variety
of meshes: closed meshes, open meshes, and even
complex meshes, such as the knot model we used that
overlaps itself (see Figure 8). It can use any type of
pattern (though the choice of a good pattern is left up
to the user), with tips of what makes a good pattern

discussed earlier in Section 2.2.

5.2 Performance and Limitations

The runtime of each of our stereogram algorithms
is approximately O(x*y*number of oversamples),
where x and y are the width and height of the
stereogram in pixels, respectively. The runtime of the
image reading for custom patterns is O(x*y) where x
and y are the width and height of the image provided
in pixels. The image is only read once in the beginning
and stored so that it does not have to be reread if the
same model is used to create multiple stereograms. In
practice, our stereogram algorithm may be slower than
the runtime implies. This is due to two main reasons:
reading the depth values from the GPU to the CPU

may be slow, and the stereogram algorithms loop



through the width times the number of samples
multiple times.

There are a few limitations of our stereogram
creator. One limitation is that small details of a model
may be lost in the created stereogram due to the
limited resolution. The stereogram creator works well
to capture the general shape of the model. The custom
pattern selection also affects how much of the detail of
the model is preserved. Another hindrance is that the
stereogram creator can be noticeably slow for creating

larger stereograms.

5.3 Future Work

There are numerous avenues for future additions
to this system, including a few stretch goals we didn’t
get to implement before we ran out of time. A
stereogram solver would be a good thing to add,
especially since it may be difficult for people to view
autostereograms if they have no experience with them.
Furthermore, there exists the possibility for animated
stereograms, though our current system does not allow
for motion capture or live depth buffer updating. This
would require some reworking of the image generation

system.

5.4 Work Breakdown

Sam set up the stereogram class and implemented
all algorithms for each type of stereogram generation.
He spent about 12 hours on this project.

Sophie did the set up, adjustment, and
visualization of the depth buffer values, the image
reading and writing, and the implementation for
oversampling. She spent about 14 hours on this

project.

ACKNOWLEDGEMENTS

We would like to thank professor Barb Cutler for
providing all the necessary starter code and meshes. A
special shout out to Cutler’s two cats: Licorice and
Nutmeg, both of whom provided emotional support at

office hours.

REFERENCES
[1] Morland, D.. (1976). Computer-generated

stereograms: a new dimension for the graphic arts.
ACM SIGGRAPH Computer Graphics. 10. 19-24.
10.1145/965143.563279.

[2] Randima Fernando. (2004) GPU Gem:s:
Programming Techniques, Tips and Tricks for
Real-Time Graphics. Pearson Higher Education.

[3] Steer, W. A. (2006, July 15). Andrew's
Stereogram Pages.

[4] Thimbleby, Harold & Inglis, Stuart & Witten,
Ian. (1994). Displaying 3D Images: Algorithms for
Single Image Random Dot Stereograms. IEEE
Computer. 27. 38-48. 10.1109/2.318576.

[5] Tyler, C.W. and Clarke, M.B. (1990) The
autostereogram. SPIE Stereoscopic Displays and
Applications 1258: 182—196.

[6] Wheatstone, C. (1838) Contributions to the
Physiology of Vision. Part the First. On Some
Remarkable, and Hitherto Unobserved, Phenomena of
Binocular Vision. Philosophical Transactions of the
Royal Society of London (1776-1886). 1838-01-01.
128:371-394



Figure 6: Stanford Bunny RDS (with 4 samples per pixel)

Figure 7: Stanford Bunny Floral Custom Pattern (with wrong colors)

BEERA FAGE

Figure 8: Complex Knot Model RDS

Figure 5: Stanford Bunny RDS (with no oversampling) Figure 9: Custom Pattern Stereogram of a Teapot



