
Customizable Stereogram Creator
Sam O’Connor (oconns5@rpi.edu) and Sophie Richards (richas3@rpi.edu)

Figure 1: Stanford Bunny Custom Autostereogram

ABSTRACT

We present a customizable system that allows

for users to create personalized autostereograms. We

provide options for the construction of random-dot

stereograms and custom pattern stereograms,

alongside personalized user input for meshes, image

size, oversampling, and eye convergence distance.

This system outputs a single-image optical illusion

wherein the user must adjust their vision to

experience the appearance of three dimensions and

depth.

Keywords: autostereogram, optical illusions,

random-dot stereogram, stereoscopy, stereoscope,

stereogram

1. INTRODUCTION

1.1 Background

Stereoscopy is defined as a technique for

generating the illusion of three dimensional depth

and space using two dimensional images or video,

and it’s something that’s been researched for

centuries. Its earliest documentation dates back to

the early 19th century - in 1838, Sir Charles

Wheatstone made note of the fact that the left and

right eyes see slightly differently when it comes to

perspective. Wheatstone discovered that “[there is]

no difference between the visual appearance of an

object in relief and its perspective projection on a

plane surface…” [6] This physiological discovery

led him to create the Wheatstone stereoscope. These

were novel devices that contained two versions of

the same image (as seen by each eye), and used

reflective mirrors and refractive prisms to combine

the two images into a composite. This composite

was dubbed a stereogram, and within it contained

the mirage of three dimensions; some elements of

the picture would appear closer to the eye than

others. These magical scopes are seen as some of the

earliest forms of virtual reality, and stereoscopic

technology has become much more commonplace

nowadays. Modern examples of this are 3D movies

(popularized by studios like IMAX), and virtual

reality goggles, like the Oculus Rift and the HTC

Vive.

1.2 Related Work

As the computer graphics community began to

grow, computer-generated stereograms became an

area of interest in the late 1970s. Morland [1]

produced the first known computer-generated

stereoscopic space, using the GENIGRAPHICS

system created by General Electric. From there, the

stereogram niche was given room to blossom.

Around the same time, Christopher Tyler and

Maureen Clarke were working to combine the

pre-existing theories regarding wallpaper

stereograms and random-dot separate-image

stereograms. By 1990, Tyler and Clarke [5] had

discovered the computer’s ability to combine two

stereograms created with random black and white

pixel values, and created the first random-dot

autostereogram. These autostereograms were able to

create the illusion of space like previous

stereograms, but with the distinct difference of being

amalgamated into one singular image. The person

viewing the image would have to do the work of

stereoscope by unfocusing their eyes to see the

hidden image. Their work would go on to inspire a

series of books called Magic Eye , which featured

autostereograms composed of custom patterns and

colors rather than black and white dots. Magic Eye

serves as the main inspiration for our

implementation.

2. AUTOSTEREOGRAMS

Our implementation allows for the creation of

two different types of autostereograms: random-dot

stereograms (RDS), and custom patterned

stereograms.

2.1 Random-Dot Stereograms (RDS)
To create random-dot stereograms, we provide a

recreation of the algorithm developed by Thimbleby

et al. [4]. We chose to base our work off of their

algorithm due to its high performance and its

symmetry regarding left eye and right eye bias. It

produces little to no artifacts, and for its minimal

drawbacks (depth stairs), we provide the solution of

oversampling, described in Section 4.1 of this paper.

The random-dot algorithm cannot work without

one argument: a two dimensional depth buffer with

defined dimensions of the width times the height of

the window. This buffer contains values from 0.0 -

1.0, and said values correspond to depth information

about the inputted mesh in relation to the camera’s

position and perspective. Once this is obtained, pixel

values are generated in scan-line order. At each pixel

location, the stereoscopic separation is calculated

using the depth buffer by the following formula:

 eparation (1 μ) e (2 μ z)) s = (− * z * / − *

where is the fraction of viewing distance, z is the μ

depth buffer value, and e is the eye separation.

is then rounded to the nearest whole eparations

number. Left and right eye-values are determined

from the separation value by:

 ef t separation 2 l = xp − /

 ight lef t separationr = +

where is the x position of the pixel. From there, xp

we determine if the current point is obscured by a

surface in the foreground, and perform hidden

surface removal. Values to the left and right of the

current x position are checked incrementally to see if

they block the current z value. If the current position

is visible, the left and right values are used to

displace the current pixel. Otherwise, it is ignored.

From there, random dots are assigned to the pattern

as a whole. If the pixel has not been displaced, a

random value is assigned. Otherwise, the pixel’s

color is constrained and defined by its left or right

value. This culminates by compiling all of the rows

of pixels into a two dimensional array of values of

0’s and 1’s. 0’s correspond to a black pixel, and 1’s

correspond to a white pixel. This completes the RDS

implementation, and the array of values is passed to

our image generator.

2.2 Custom Stereograms
Custom stereograms can be differentiated by

their random-dot predecessor due to their distinctive

patterns. These patterns can be any size and can

contain all sorts of shapes and colors. From our

testing, we’ve found that certain patterns work better

than others. Smaller patterns that contain lots of

color variation and “noise” help disguise the

displaced pixels best. Figure 2 and Figure 3 show

the difference between a bad custom pattern and a

good custom pattern, respectively. Figure 2

showcases a notable outline of the Stanford bunny,

while it’s indiscernible what Figure 3 is an

autostereogram of at a glance.

In our implementation, the algorithm is fairly

similar to the random-dot stereogram. We follow the

algorithm laid out by Steer [3], which differs only

slightly from RDS’s. The major difference between

the two relates to the pixel color assignment. Instead

of a random black or white color, the pixel color is

defined by a region of the original pattern image.

The location is determined by the x and y positions

modded by the pattern width and height,

respectively. Another difference is that a two

dimensional array of RGB values is compiled rather

than single floats. This preserves color from the

original pattern. Additionally, the custom pattern is

tiled beginning with the pattern placed in the center

of the image. Previous algorithms for generating

custom patterns begin by creating a stripe of the

custom pattern on one side of the image, and

deriving pixel color values from that untouched

stripe [2]. Our implementation avoids this artifact,

and overall, generates a more pleasing stereogram.

3. IMAGE GENERATION
To generate the resulting image, first the values

from the depth buffer from the modern graphics

pipeline from OpenGL are read from the GPU to the

CPU. Then, said values are passed to the stereogram

algorithm. Next, the resulting values from the

stereogram algorithm are taken, which holds a value

between 0 to 1 for each pixel for RDS, or RGB

values between 0 to 1 for custom stereograms. If

there is no oversampling for the RDS, then the

values will only be 0 for a black dot and 1 for a

white dot; oversampling will add in-between values.

These values are used to set each color of each pixel

of the resulting image to be between 0 to 255. These

pixels are saved as a .ppm file. This file type was

chosen due primarily to the ease of reading and

writing from them. All of the .ppm files have a max

color value of 255, meaning the pixel data for each

color is 1 byte.

4. TECHNICAL ISSUES

4.1 Depth Buffer Precision

There were a few issues that arose from the depth

values. One of these issues was that the values from

OpenGL's depth buffer are not linearized, so the values

had to be adjusted to be linear before being passed to

the stereogram algorithms.

Another roadblock we faced early on was that the

near and far planes were distant from each other

compared to the models that we were loading. This

resulted in stereograms that appeared to be rather flat.

In Figure 4, it resulted in the stereogram having about

three layers of depth. The near and far planes were

brought closer to each other to get a greater range of

depth values from the models. This made our

stereograms appear to have more depth than before.

This can be seen in Figure 5.

Finally, there was the “depth stairs” issue, which

defines when there is a noticeable step between one

layer of depth to another. At first, we thought that

this was the result of the limited precision of the

depth buffer, so we made a frame buffer that had

greater precision for the depth buffer. We used that

to get the depth buffer values, but the resulting

images still had the same amount of depth stairs.

Instead, the reason we were getting depth stairs was

due to the limited resolution of the images we were

creating. All of the images we created were set to be

72 DPI. To get smooth images, they would have to

be approximately 300 DPI [3]. This is impractical

for many reasons; one reason being that a lot of

monitors have less than 300 DPI resolution. Instead,

to get smooth images, we used oversampling. The

oversampling in the stereogram algorithm causes it

to treat the inputted image as a higher resolution

than it actually is, and then averaging the results to

get the desired lower resolution at the end, similar to

antialiasing. This resulted in stereograms that had

less noticeable depth stairs, even though they were

created at 72 DPI. The effects of this oversampling

can be seen by comparing Figure 5 and Figure 6.

Some custom patterns can also hide the depth

stairs as well. The floral pattern from [2] (used in

Figure 2) resulted in smooth stereograms, despite

not being the best pattern due to its color gradients.

The depth stairs in the colorful dots pattern (used in

Figures 3 and 9) are somewhat noticeable, but not as

bad as an RDS with no oversamples.

4.2 Drawing from Custom Images
We ran into a couple of issues when trying to

create the custom patterned stereograms. Namely, the

resulting stereograms had colors not present in the

original image. Additionally, the resulting stereogram

turned out rather skewed and warped, as shown in

Figure 7. This was the result of two things: reading in

the image incorrectly, and disparities with different

parts of the program using row major matrices and

others using column major matrices. For fixing the

image reading issues, we made sure we were reading

things in the right order and setting things to be the

right data type by writing a copy of the image and

making sure that they looked the same. Image reading

was mostly fixed by doing this, with custom

stereograms with no oversampling looking correct.

Custom stereograms with oversampling had noticeable

errors though, with pixels of different colors from the

original pattern appearing around the edges of a depth

layer. This was due to reading in color values in the

.ppm file as a char instead of an unsigned char,

resulting in negative values for colors. This would

cause values that didn't make sense to pop up when

adding and averaging colors together. The reason the

non-oversampled custom stereograms seemed to be

fine was due to the values being cast as chars when

being written to the file, so those color values were the

same as the values in the original image.

The issue regarding row vs. column major

matrices had also turned up earlier in our

implementation, with the depth buffer values being in

opposite orientation compared to the stereogram

algorithms. This resulted in the models in the

stereogram to be rotated 90 degrees compared to their

actual positioning on the screen. Both the depth buffer

and the custom image data were reoriented to match

the stereogram algorithm's orientation, which finally

resulted in stereograms matching the perspective seen

in the viewport window. This was important to us, as

we wanted the stereograms to match the user-defined

orientation of the mesh.

.

5. CONCLUSION

5.1 Results and Discussion
All of the resulting images were created at 72 DPI,

with an eye separation of about 2.5 inches. These same

values were used in the algorithm by Thimbleby et al.

[4]. The actual separation needed to view these

pictures may be more or less due to the scaling of

these images compared to the original size they were

created at. To account for this, our implementation

allows this variable to be user-defined in the

command-line inputs, with a default value of 2.5

inches.

Our stereogram creator can be used with a variety

of meshes: closed meshes, open meshes, and even

complex meshes, such as the knot model we used that

overlaps itself (see Figure 8). It can use any type of

pattern (though the choice of a good pattern is left up

to the user), with tips of what makes a good pattern

discussed earlier in Section 2.2.

5.2 Performance and Limitations
The runtime of each of our stereogram algorithms

is approximately O(x*y*number of oversamples),

where x and y are the width and height of the

stereogram in pixels, respectively. The runtime of the

image reading for custom patterns is O(x*y) where x

and y are the width and height of the image provided

in pixels. The image is only read once in the beginning

and stored so that it does not have to be reread if the

same model is used to create multiple stereograms. In

practice, our stereogram algorithm may be slower than

the runtime implies. This is due to two main reasons:

reading the depth values from the GPU to the CPU

may be slow, and the stereogram algorithms loop

through the width times the number of samples

multiple times.

There are a few limitations of our stereogram

creator. One limitation is that small details of a model

may be lost in the created stereogram due to the

limited resolution. The stereogram creator works well

to capture the general shape of the model. The custom

pattern selection also affects how much of the detail of

the model is preserved. Another hindrance is that the

stereogram creator can be noticeably slow for creating

larger stereograms.

5.3 Future Work
There are numerous avenues for future additions

to this system, including a few stretch goals we didn’t

get to implement before we ran out of time. A

stereogram solver would be a good thing to add,

especially since it may be difficult for people to view

autostereograms if they have no experience with them.

Furthermore, there exists the possibility for animated

stereograms, though our current system does not allow

for motion capture or live depth buffer updating. This

would require some reworking of the image generation

system.

5.4 Work Breakdown

Sam set up the stereogram class and implemented

all algorithms for each type of stereogram generation.

He spent about 12 hours on this project.

Sophie did the set up, adjustment, and

visualization of the depth buffer values, the image

reading and writing, and the implementation for

oversampling. She spent about 14 hours on this

project.

ACKNOWLEDGEMENTS
We would like to thank professor Barb Cutler for

providing all the necessary starter code and meshes. A

special shout out to Cutler’s two cats: Licorice and

Nutmeg, both of whom provided emotional support at

office hours.

REFERENCES
[1] Morland, D.. (1976). Computer-generated

stereograms: a new dimension for the graphic arts.

ACM SIGGRAPH Computer Graphics. 10. 19-24.

10.1145/965143.563279.

[2] Randima Fernando. (2004) GPU Gems:

Programming Techniques, Tips and Tricks for

Real-Time Graphics. Pearson Higher Education.

[3] Steer, W. A. (2006, July 15). Andrew's

Stereogram Pages.

[4] Thimbleby, Harold & Inglis, Stuart & Witten,

Ian. (1994). Displaying 3D Images: Algorithms for

Single Image Random Dot Stereograms. IEEE

Computer. 27. 38-48. 10.1109/2.318576.

[5] Tyler, C.W. and Clarke, M.B. (1990) The

autostereogram. SPIE Stereoscopic Displays and

Applications 1258: 182–196.

[6] Wheatstone, C. (1838) Contributions to the

Physiology of Vision. Part the First. On Some

Remarkable, and Hitherto Unobserved, Phenomena of

Binocular Vision. Philosophical Transactions of the

Royal Society of London (1776-1886). 1838-01-01.

128:371–394

 Figure 2: Stanford Bunny Floral Custom Pattern

 Figure 3: Stanford Bunny Colorful Dot Custom Pattern

 Figure 4 : Stanford Bunny RDS (with little range in depth)

 Figure 5: Stanford Bunny RDS (with no oversampling)

 Figure 6: Stanford Bunny RDS (with 4 samples per pixel)

 Figure 7: Stanford Bunny Floral Custom Pattern (with wrong colors)

 Figure 8: Complex Knot Model RDS

 Figure 9: Custom Pattern Stereogram of a Teapot

