Particle-Based and
Preprocessed
Deformation using
Tetrahedrons

Michael Peters, Marcus Panozzo

ABSTRACT

We present an application which simulates both
pre-processed and real-time tetrahedral mesh
deformation. We use TetGen to generate quality
tetrahedral meshes. Our preprocessor, PLYBuilder
can remove spherical portions of the tetrahedral mesh
using what we call, cookie-cutter spheres.
PLYBuilder also outputs the preprocessed meshes in
PLY format for view with ParaView and CSV format
for RenderLite. RenderLite visualizes the tetrahedral
meshes in real-time and can perform a particle based
deformation system to visualize drilling a hole or
slicing a portion off of a mesh.

1. Introduction
Tetrahedrons have been used in a variety of ways to
represent the internal volume of a bounding mesh.
Our approach uses tetrahedrons as progressive
"chunks" of the mesh that can be removed when
degraded. Our simulator seeks to take advantage of
this volumetric structure to simulate a progressive
degradation of a mesh. We will demonstrate the
following two ways of degrading the mesh:

1) Cookiecutter spheres with PLYBuilder

2) Particle system simulation with RenderLite

2. Related Work

Other works such as Huang's and Kenwright's have
efficiently generated mesh deformations using a
combination of interpolation and a basis mesh. These
algorithms have also been shown to run effectively in

real time. Our approach aims to use a similar basis
mesh to Huang and Kenwright. However, we do not
interpolate the exterior faces while deforming the
mesh. This step applied on top of our process to
further improve the smoothness of the deformation.
We decided to leave it out for the sake of a simpler
application.

3. Tetrahedralization with TetGen
TetGen, developed by Hang Si, can produce high
quality tetrahedral meshes for any closed polyhedral
mesh. It implements Hang Si's Constrained Delaunay
tetrahedralization algorithm as discussed in his paper
from Weierstrass Institute for Applied Analysis and
Stochastics.

3.1 Removing Bad Tetrahedrons

TetGen provides two sliders to control the quality of
the output mesh. The first of these sliders controls the
aspect ratio of the tetrahedron. A tetrahedron's aspect
ratio refers to the length of its longest edge divided
by the length of its shortest edge. The best aspect
ratio for a quality tetrahedron is 1 [3]. That is, all
lengths of a tetrahedron's edges are the same. A lower
aspect ratio tetrahedralization will contain fewer
artifact-producing elements. These "bad"
tetrahedrons are classified as needle, spindle, wedge,
cap, and sliver tetrahedrons.

X/)mow

J
Regular Needle Spindle Wedge Cap Sliver

Figure 1: Tetrahedron Shapes
Source: http://tetgen.org

During deformation, "bad" tetrahedrons should be
avoided as they can create unexpectedly large
changes or artifacts in the resultant mesh.

TetGen provides a quality-determining slider
proportional to aspect ratio. This slider controls the
minimum radius-edge ratio of the tetrahedron. The
radius-edge ratio refers to the length of the radius of
the smallest circumscribing sphere to the length of
the smallest edge. Regular tetrahedrons have the
smallest radius-edge ratio at \6/4 ~ 0.612 [3]. The
radius-edge ratio is very effective at filtering out
needle, spindle, wedge, and cap tetrahedrons.
However, it is not effective at filtering out sliver
tetrahedrons. This anomaly can be seen in the
following diagram:

Figure 2: Radius-Edge Ratio Visualization
Left-to-right: Regular, Wedge, and Sliver
Source: http://tetgen.org

As shown in the figure, the sliver tetrahedron on the
right maintains a similar radius-edge ratio to the more
regular tetrahedron on the left. In a perfect scenario,
the regular tetrahedron would be selected over the
sliver tetrahedron. However, the radius-edge ratio
does not provide this level of quality control

3.2 Maximum Area

The second of TetGen's tetrahedralization quality
sliders controls the maximum volume of a single
tetrahedron within the output mesh. TetGen uses
smaller tetrahedrons to represent detailed surfaces of
a mesh. However, this could lead the interior of the
mesh to have much larger tetrahedrons than the
exterior.. Constraining the maximum volume can help
to maintain a consistent size of tetrahedron within the
mesh. Without a consistent volume, larger
tetrahedrons in lower-detail portions of the mesh can
cause jumpy deformations as depicted in figure 3.
Figure 4 depicts a properly area-constrained
tetrahedralization.

Figure 3: Without area constraints

\

~

W S

A\
N

Figure 4: With area constraints

4. PLYBuilder

The first purpose of PLYBuilder was to generate
tetrahedral mesh files viewable in the mesh viewing
program, ParaView. ParaView can open .ply files
containing a combined list of vertices and edges.
TetGen has the option to output .ply files. However,
TetGen's .ply file output only contains the exterior
faces of the mesh and does not contain the structure
for the internal tetrahedrons.

4.1 Tetrahedron Visualization

TetGen's outputs more than the external face.ply file.
It provides a variety of data files including vertex
data for each tetrahedron, a list of tetrahedral vertex
elements, a list of neighboring tetrahedrons, and a list
of exterior faces in non .ply format. PLYBuilder
loads the vertex data file and the elements data file. It
processes these files to determine the faces of the
internal tetrahedrons and outputs a .ply file
containing this data. The resulting PLYBuilder .ply
file can be visualized in ParaView. With some minor
transparency, it is easy to see the internal tetrahedral
structure of the meshes as shown below.

Figure 5: Tetrahedral Visualization in ParaView

4.2 Random Deformation

As a proof-of-concept, we determined that
PLYBuilder could be used to randomly deform our
tetrahedralize meshes. To create a random

deformation, we selected a ratio of tetrahedrons to
keep and randomly selected them from the list of
elements. The culled tetrahedrons were skipped and
not added to the resulting .ply file. An example of
this can be seen in the following figure.

Figure 6: 50% Deformed Bunny

4.3 Cookie Cutter Spheres

The random generation inspired us to go further with
pre-processing deformation. It could be useful to cut
out portions of a mesh to create dents or other surface
features. To do this, we created spheres within the
mesh. Any tetrahedrons intersecting with these
spheres would be removed from the resulting mesh.

A naive approach to sphere-tetrahedron collision
would entail intersecting the sphere with each of the
tetrahedron's face planes. However, for improved
performance, we implemented an alternative
sphere-tetrahedron intersection method that uses a
bounding sphere around the tetrahedron and a
projected point. This method takes advantage of the
convexity of the sphere and tetrahedron shapes. First,
we computed the maximum radius from the centroid
ct of each tetrahedron's vertices, rt. Then we
computed the distance d between ct and the center of
the sphere cs. If the sum of the radius of the sphere rs
and 7t is greater than d, then the tetrahedron and
sphere cannot intersect. Further, if d is less than or
equal to rs, the tetrahedron must intersect with the
sphere as its centroid intersects with the sphere.
Otherwise, when rs <d <rt+ rs, we project a point p
tors * (rs - dt) /|| rs - dt ||. This can be described as
projecting to the point on the sphere closest to the
centroid of the tetrahedron. If this point is on the
internal side of all four faces of the tetrahedron, the
sphere intersects with the tetrahedron. If not, the final
stage of our sphere collision algorithm calls for
intersection with each of the vertices v of the
tetrahedron to be intersected with the sphere. If || v -
¢s || < r, the tetrahedron intersects with the sphere.
Otherwise, the tetrahedron does not intersect with the
cookie cutter sphere, and will be exported by
PLYBuilder. With the high-quality, low aspect ratio
tetrahedrons generated by TetGen, the final step of
our algorithm can be skipped to produce similar
results with slightly improved runtime. However, the

results will be slightly more jagged. This effect is
exaggerated with tetrahedral meshes containing more
needle and spindle tetrahedra. The full and partial
versions of the cookie cutter algorithm's results are
shown below.

Figure 7: Cookie Cutter Cutouts
Right-to-left: No cookie cutter, full cookie cutter,
cookie cutter with last step removed

S. RenderLite

RenderLite is our lightweight rendering program we
created in order to display our simulations. Written in
C++ and using the OpenGL rendering pipeline, it is
capable of loading all necessary geometries, textures,
and shaders into one place, where they are processed,
and utilized when drawing to the screen.

Figure 8: RenderLite rendering a simple mountain
tetrahedral mesh.

Runtime of the RenderLite program consists of
several stages. First, all essential objects are
initialized, such as a window context (for drawing to
the screen). Then, shader programs are compiled
based on those specified by an xml file, allowing us
to specify many shaders programs, with any variety
of stages, to be compiled upon runtime without
including extra program logic.

Most importantly, traditional meshes and then, the
tetrahedral meshes, are loaded into program memory.
After loading these into program memory, this data is
passed to OpenGL buffers. We referred to these
references to stored OpenGL data as GLHandles.
These allow for instancing of objects on the screen.

5.1 Loading Shader Programs

For ease of updates, shader programs are stored in
text files, which are then referenced in an XML file.
The XML file stores a schema containing
specifications for all the shader programs to be
compiled. This schema includes the specified stages,
such as a Vertex shader stage, a Geometry shader
stage, or a Fragment shader stage. This file is read
and a corresponding hashmap of compiled GLSL
shader programs is stored for use by RenderLite.

5.2 Loading Traditional Meshes

In the context of our project, “traditional meshes”
refers to non-tetrahedral meshes. These are loaded
into memory using an external library called Assimp.
The mesh vertex data is then placed into OpenGL
buffers to be drawn later.

53 Loading Tetrahedral Meshes
Tetrahedral meshes are specified using two csv files.
These files can be generated using PLYBuilder. One
contains the vertex positions themselves, while the
other contains a specification for constructing a
tetrahedron using four numbered vertices (which
were specified in the vertex file). This has the benefit
of allowing us not to duplicate vertex data when
reading from file memory, ensuring space is
conserved when copying data into OpenGL buffer
memory.

Similar to loading traditional meshes, tetrahedron
vertex data is stored in an OpenGL memory buffer to
be called upon later.

C

Figure 9: Sketch of a Tetrahedron. The four vertices
would be stored in memory

Handles to the tetrahedron’s data are then packaged
into Tetrahedron objects, which store unique
positions, a centerpoint, a transformation matrix (for
storing any transformations), and a health value.

Tetrahedrons use a health based system to determine
when they should be removed. Once the health of a
tetrahedron object reaches below zero, it is removed
from the drawing calls. A tetrahedron’s health is

initially determined by its volume when it is imported
from the data file.

5.4 Rendering Loop

Once all external assets have been loaded, RenderLite
runs in a rendering loop, taking user inputs, updating
the window when resized, and drawing to the
OpenGL context with the latest scene information.
Most importantly, the rendering loop is where
computations for the interaction between tetrahedrons
and particle systems are done.

6. Particle Systems

A particle is simply a point in space which is
managed by the ParticleEmitter class. Tetrahedrons
are reduced in health when they come into contact
with a particle. The ParticleEmitter class keeps track
of attributes such as locations for particles, the
current time of the simulation, and an updated list of
which particles are in play.

| W/ .
Figure 10: Screenshot of RenderLite particle emitter
in action.

6.1 Particle Emitter

The ParticleEmitter class is responsible for the
generation, modification, and storage of particles.
Particles are generated in a cylindrical volume. The
generation sequence occurs in a chronological order,
generating sections of the full stream segments at a
time. The duration of the stream, as well as how
many particles to draw per section can be specified
during construction of the object.

Particles are pre-determined as a specified initial
direction and position. They are only active (and
visible) once the ParticleEmitter’s internal
timekeeper reaches a certain threshold. This allows us
to visualize new particles without needing to generate

them during the real-time rendering. This was done to
improve the performance of the program.

6.2 Particle Appearance

We decided to render the particles as points in
OpenGL memory buffers. The attributes of the
particles (i.e. size, shape, color, texture) are
determined inside the geometry shader program. For
our simulations, we chose to render square-like
patches. The color is added using a simple
single-color fragment shader.

The flexibility of the shader compilation system
allows us to create multiple variants of particle
emitter shaders very easily. Particles with different
colors can simply be made by using a different shader
program.

Figure 11: Modified particle shader program,
illustrated moving horizontally and in blue.

7. Terraformer

The Terraformer class is responsible for performing
the Tetrahedron health reduction and removal of
damaged tetrahedrons. During execution of the
rendering loop, the Terraformer performs proximity
calculations using the particles in play from the
ParticleEmitter and the tetrahedron positions passed
in earlier.

7.1 Particles in Play

Upon each tick of the particle emission undertaken in
the main render loop, the particles which “are in
play” (are active) are updated by the Terraformer.
Time governs whether a certain section of the
ParticleEmitter’s particles are drawn or not.

7.2 Proximity Check

After each call to update the particles in play, the
proximity of a tetrahedron to nearby active particles
takes place. This proximity check simply compares
the centroid of the tetrahedron to the position of the
particle. If the two positions are within a specified

range of each other, then the tetrahedron's health is
lowered. If the health goes below a certain threshold,
it is marked as damaged and will no longer be
rendered. Efficiency of this method is O(n*m), where
n is the number of tetrahedrons and m is the number
of particles in play.

8. Future Work

PLYBuilder's cookie cutter feature is useful to cut out
portions of a mesh. However, these cutouts are
typically relatively jagged, even with very low
radius-edge lengths from TetGen. PLYBuilder could
implement a tetrahedral mesh simplification system
by simplifying the jagged tetrahedrons into a
smoother surface. The initial surface tetrahedrons
could be determined using the external faces list
generated by TetGen. Then, each time an external
face is removed by the cookie cutter sphere, its
revealed tetrahedrons could be marked as having an
exterior face. Finally, after cookie cutting out the
sphere, the marked faced tetrahedrons could be
simplified together to produce a smoother mesh that
could then be re-fed through the tetrahedralization
pipeline.

The primary future work for RenderLite includes
fixing vertex scaling issues (which cause the spacing
in-between tetrahedrons) as well as improving the
performance of the particle simulations. Due to the
method of activating particles based on time, as the
simulation runs on, the number of frames per second
decreases significantly. This could be mitigated by
choosing a better data structure for storing particles,
such as a spatial tree. The performance could also be
improved by implementing a hierarchy of tetrahedron
collisions. Further, the realism could be improved by
implementing a progressive shader for the tetrahedral
meshes.

9. Team Workload

Michael Peters researched TetGen to create the
tetrahedral meshes. He also created the PLYBuilder
program itself. He assisted in creating properly
formatted input files for RenderLite to be able to load
the tetrahedrons. He also developed the cookie cutter
sphere preprocessor step within PLYBuilder.

Marcus Panozzo wrote RenderLite and
sub-components part of the visual application, such
as the previously mentioned ParticleSystem and
Terraformer. He also created some of the original
mesh models such as the mountain.

10. Acknowledgments

We would like to thank Professor Cutler for
providing feedback and guidance on parts of this
project.

REFERENCES

[1] SCHEWCHUCK, JONATHAN RICHARD.
Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery. IMR,
2002

[2] SI, HANG. A new constrained Delaunay
tetrahedralization algorithm. Weierstrass
Institute for Applied Analysis and Stochastics,
2020.

[3] SI, HANG. TetGen: A Quality Tetrahedral Mesh
Generator and 3D Delaunay. WIAS-Software,
2020

[4] HUANG, JIN. Efficient Mesh Deformation Using
Tetrahedron Control Mesh. ACM Solid and
Physical Modeling Symposium, 2008. pp
241-247.

[5] KENWRIGHT, BEN. Free-form tetrahedron
deformation. International Symposium on
Visual Computing, 2015. pp 787-796.

[6] V. KRS, et al. Wind Erosion: Shape Modifications

by Interactive Particle-based Erosion and
Deposition. ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 2020.

[71 KAMARUDIN, N H, et al. “Assembly Meshing
of Abrasive Waterjet Nozzle Erosion
Simulation.” IOP Conference Series:
Materials Science and Engineering, vol. 290,
2018, p. 012069.

