Approximate Black Hole Renderings with Ray Tracing

Mack Qian
Rensselaer Polytechnic Institute
gqianm@rpi.edu

May 2021

Figure 1: A complicated black hole scene, rendered with
a disk, 2 reflective spheres, and 4x antialiasing

Abstract

In this paper, we describe a method to create approxi-
mate black hole renders based off of ray tracing. Rather
than ray tracing with linear paths, we use photons
and apply Newtonian gravitational forces to it, caus-
ing them to travel in non-linear and curved paths. This
method is able to simulate predicted behaviors such as
gravitational lensing of objects behind the black hole
or the image distortion of an accretion disk around the
black hole. This method is able to also support some
common ray tracing visuals, such as antialiasing and
recursive reflections.

1 Introduction

Ray tracing is usually done with straight and linear
light paths, as expected from light in regular and nor-
mal scenes. However, there are cases where light can
bend and travel in non-linear paths, such as when they
are bent and lensed by gravity from galaxies over vast
distances of space or by immense gravity wells cause by
black holes [4]. Physically accurate simulations require
a fair amount of complicated math and physics knowl-
edge, but visually acceptable models can use Newtonian
gravity to approximate light rays. Doing so can vastly
simplify calculations while still being able to simulate
some of the predicted behaviors somewhat accurately.

2 Related Work and Resources

Previous works on rendering black holes include work
done for Interstellar [4], which describes methods for
rendering spinning (Kerr) black holes. They use a mod-
ified ray tracing algorithm with ray bundles and Kerr
metric to create a tool called DGNR (Double Negative
Gravitational Renderer) to create the renderings used in
the movie. Another earlier paper [5] created a rendering
of a Schwarzchild (non-spinning) black hole with a thin
accretion disk along with other effects such as Doppler
shifting. There have also been a number of projects that
we used as a reference for this project. This includes 2D
visualization of black holes created by Daniel Schiffman
[8], which provided the 2D basis for the photon path al-
gorithms and Chris Orban’s relativistic correction [6].
Ricardo Antonelli’s “Starless” [2], which provided help-
ful visuals for helping to evaluate the accuracy of our
algorithms.

The project used Homework 3 code as its basis. We
also used Alex Peterson’s Spacescape [7] and OpenCV
[3] to generate the space scenes used in a few of the
visualizations.

3 Implementation

We first create a new BlackHole class. This class
takes in a mass and position, then computes the radius
based off of the following equation:

Where G is the gravitational constant, c¢ is the speed
of light, and M is the mass of the black hole. This
equation is based off of the Schwarzchild metric used
for calculations on non-spinning black holes. This is
the approach used by Schiffman [§]. This radius de-
notes the event horizon of the black hole, where once
light enters,it cannot escape back out. However the ac-
tual image of the black hole will appear about 2.5 times
larger than this radius [2] as low incoming light rays get
pulled in and “absorbed”. This computed radius will
then help determine when a light ray should continue on
its path or stop if it is within the sphere defined by the
radius. One major assumption is that we make G and ¢
arbitrary values of 1 and 10. We do this as it keeps the
scale of the simulation, as using the real values of G and
c (6.674 x 10711 and 299,792,458 [9]) would cause the
simulation to scale to very large values, which would be
very impractical and inefficient. These two arguments
along with a time step dt can be specified within the

command line arguments or left to the default values.
With those constants fixed, the given mass then con-
trols the black hole radius, with bigger masses giving
a bigger and stronger black hole. The black hole mass
and position are added via the scene .OBJ files with
the tag bh, which then the file parser reads and adds
to a list of all black holes. This list allows support for
multiple black holes in the scene, as they all will factor
into the path computations.

3.1 Path Algorithm

We use the following algorithm to replace the basic ray
cast intersection code in the TraceRay algorithm in the
homework:

def bhRayTrace(Ray r,Hit h):
pos=r.origin
vel=r.dir=xc
for 10K iterations:
temp=pos
klv,kla=step (pos, vel)
k2v ,k2a=step (pos+dt *x0.5xklv
,vel+dtx0.5xkla)
k3v ,k3a=step (pos+dt *0.5xk2v
,vel+dt *0.5xk2a)
kdv ,kda=step (post+dtxk3v
,vel+dtxk3a)
pos += (1/6.0)*dt
*(k1v+2xk2v+2xk3v4+kdv)
reScaleV (vel
,(1/6.0)xdt
*(kla+2xk2a+2+k3a+k4a))
for b in blackholes:
dist=(pos—center).length ()
if dist<b.r:
return absorbed
Ray tracer=Ray(temp, pos—temp)
addSegment (tracer ,0,1)
intersection=newlIntsct (pos,vel ,h)
if intersection found:
return intersection
return fail

In order to begin computing the path, we first create
a photon from the ray given in main the ray tracing
algorithm. This ray can be either from the main cam-
era view or recursive rays like those from reflections or
refractions. The origin and direction are used to initial-
ize the photon’s position and velocity. For the velocity,
we just multiply it by ¢ since the direction is already a
unit vector. Then the algorithm loops over a set num-
ber of iterations, which we define to be 10K. This is to
put a hard limit so photons eventually stop and don’t
continue to infinity. We then use the following step
algorithm to compute a new acceleration and velocity:

def step(pos,vel):

acc=vec3(0,0,0)

for each b in blackholes:
r=vec3 (b.center—pos)

r_s=r.length ()

r.Normalize ()
temp=((Gxb.M)/r_s "2)xr
fac=temp.Dot3(vel)
fac/=vel.length ()
parallel=vel
parallel .normalize ()
parallel.scale (fac)
acct+=temp—parallel
reScale (vel ,dtxacc)
return vel ,acc

We compute the acceleration due to all black holes in
the scene. To do this, we iterate over all black holes,
and first use the vector form of the Newtonian gravity
equation to compute the acceleration:

_ GMm
||z||?

r (2)

Where M is the mass of the black hole, r is the vec-

Figure 2: A 2D example of using just Newton’s Equa-
tion with no correction [§]

tor from the position of the photon to the center of the
black hole, and 1 is the unit vector in the direction of r.
We make the (unphysical) assumption that the photon’s
mass is 1, so then the force also equals the acceleration
acting on the photon. We then apply a relativistic cor-
rection described by Orban [6]. If we did not apply this
correction, then our photons will be able to go faster
than the speed of light, which leads to a lot more rays
being sucked into the black hole. The correction is to es-
sentially only lets the acceleration change the direction
of the velocity by rotating the velocity by then angle
between it and the acceleration. To adapt the 2D case
provided by Orban to 3D, we do the following vector
computations:

a-v,
a = -——V
= Tl
al:a—a”

Where a is the computed acceleration, v is the cur-
rent velocity of the photon, v is the unit vector of the

Figure 3: A 2D example of using Newton’s Equation
with correction [8]

velocity, and a; is the component of the acceleration
perpendicular to the velocity. We find the parallel com-
ponent by projecting the acceleration onto the velocity,
then subtracting it from the total acceleration to get the
perpendicular component. Then to actually modify the
velocity, we simply just add the computed acceleration
to the vector and rescale the result back to c¢. Adding
with out rescaling will still make the velocity increase
in magnitude, so the rescaling is necessary to preserve
the speed limit.

These step calculations help us use Runge Kutta in
order to get more accurate computations with larger
timesteps. We average the steps using the the way de-
scribed by RK4 and update the position and velocity.
As before with updating the velocity, we add and rescale
to ensure the magnitude stays at c.

After the velocity and position updates, we check
whether or not the photon position has entered the
event horizon of any of the black holes in the scene.
This is simply done by checking whether or not the
distance between the photon and the blackholes’ cen-
ters are below the computed radius. If it is, we return
a flag saying it was absorbed. This flag then signals
to the TraceRay algorithm to simply return the color
black. If it passes the distance checks, it will move on
to checking for intersections, which we will detail in
the next subsection. If an intersection is found, then
it will return a flag denoting that. Then the TraceRay
algorithm will continue based off of the material stored
in Hit h, whether it be hitting a light or diffuse sur-
face and returning a color, or hitting a reflective surface
and recursing further. If all iterations execute and the
photon was not absorbed or no intersection was found,
then we return a failure flag. This signals to the main
ray trace algorithm to simply return the color magenta.
This was very helpful in debugging, though it does force
scenes to be enclosed in a skybox in order to function
properly (though one could just return the background
color and it would act just like the original ray tracing
algorithm). While helpful for debugging, it can cause

issues if the timestep is very small, as then for each it-
eration, the photon will barely move. Bigger iteration
caps are needed to use small time steps, but for our
purposes, 10K iterations were sufficient for timesteps
greater than 0.01. Also the use of RK4 mitigates the
need for using very small timesteps, having 0.1-0.5 giv-
ing good results. The use of tracer was for helping to
visualize the paths taken by the photon, allowing us to
debug the path and intersection algorithms a lot easier.
It does abuse the Ray class a bit as normally it expects
an origin and a unit vector for the direction. However,
by passing it the previous position and the from it to
the next computed position, then using 0 and 1 as the
starting and ending parameters in addSegment, we are
able to create segments that extend exactly from the
old position to the new one.

3.2 Intersection Computation

With this new ray tracing algorithm, we created a new
intersection algorithm for checking intersections with
primitives. It is as follows:

def newlntsct (pos,vel, hit):
vel.normalize ()
Ray r= Ray(pos, vel)
insct=rayCast (r,h)
if insct:
ipos=h.point
dist=(ipos—pos).length ()
if dist<dt*c+EPSILON:
return intersection
if dist <2x(dt*c+EPSILON)
and count <2:
dt*=0.1
count—++
intersection

else

return no

We first initialize a Ray based off of the current position
and velocity of the photon, making sure to normalize
the velocity as it should be a unit vector. Then we run
the original raycasting intersection algorithm to see if
something is intersected. If the scene is an enclosed
box, then this should always return a hit. With this
hit, we check whether or not this hit is close enough to
the current position of the photon. We quantify “close
enough” by noticing that at maximum, the photon will
travel the distance dt * ¢. Then the worst case for this
photon is that its velocity is perpendicular to the prim-
itive the point is intersecting. If it is above this thresh-
old, then it can still at least travel one time step’s worth
of velocity with out passing the intersecting primitive.
If is below, then we return the flag for an intersection,
as if it were to continue, it would phase through the
intersecting solid. In practice, this threshold needed
an EPSILON term as constantly adding and updating
the position leads to some floating point errors. As for
when the the distance is above the threshold, we run an
additional check to see if the photon is somewhat close
to the intersecting primitive. If it is, we shrink the time
step to 10% the original amount and increment a count
variable. This helps us speed up the computations a bit

by allowing us to use higher timesteps but still preserv-
ing the intersection algorithm. The count variable pre-
vents us from infinitely shrinking the timestep, as then
it will never intersect anything. This solution works
suprisingly well, though it is a bit inefficient. However,
as long as a normal ray cast intersection algorithm can
be defined for a primitive, then this new algorithm will
work as well. There might be potential issues if the
object is concave though, but for our purpose, where
we only deal with planes, cylinder rings, and spheres, it
works well.

4 Results

We believe or method works relatively well for being
an Newtonian approximation. Most figures will be put
at the end of the document.

4.1 Accuracy

Figure 4: One of Antonelli’s Renders [2]

Figure 5: Our Renders

We compare our images to Antonelli’s black hole ren-
ders and get similar results, shapewise. His differs from
our by also including transparency in the ring and hav-
ing the ring be off axis.

4.2 Performance

The performance is alright. Most black hole scenes take
around 1-5 minutes to render, with more complicated
scenes with reflections and antialiasing taking upwards
of 10 minutes. Performance can be increased by using a
higher time step, but will cause issues with the accuracy
of the renders.

5 Limitations and Future Work
5.1 Lighting

One of the biggest limitations for this method is the
lack of support for global and local illumination. Most
of the figures rendered used a bright ambient light to
help with the lighting, with the exception of a few of
the “color box” scenes. The shadow checking algorithm
used in normal ray tracing will not work. If we were to
start at a point and cast toward the centroid of a light
source, there could be cases where this ray ends up be-
ing occluded by being bent into the black hole or an-
other object. However, light from the light source could
be bent by the black hole and be able to hit the point we
started at. There is also the problem that centroids in
regards to lighting are not defined for some primitives,
like spheres and rings. A potential direction to go in
is to look at implementing forward ray tracing, as then
we could accurately simulate shadows. Another poten-
tially easier route for slightly better results is to look at
photon mapping(not what we were doing) and use the
modified ray tracing algorithm to affect the paths the
photons take. This would still need some definitions for
generating photons for some primitives, but it would be
able to generate caustics by gathering the photons. For
example, if circular light source were directly above a
black hole, then a ring or a circular caustic could be
formed depending on the scene.

5.2 Performance

Another limitation is the performance. While manage-
able for this project, it would handle very complicated
scenes poorly. Scenes with many black holes would
slow the performance of the path calculations, while
scenes with many objects will considerably slow down
the program, as the intersection runs for each iteration
of the path computation. The expensive intersection al-
gorithm could be solved by implementing spatial data
structures, as then it would allow us to do less inter-
section checks. The intersection algorithm itself has
some issues, as it had a tendency to phase through ob-
jects quite a lot, so a more robust and faster algorithm
would definitely be an improvement. And generally for
performance, multithreading the ray tracing operations
would speed things up. This would be relatively easy
to do, as each ray trace is independent of one other,
so concurrency would not run into many issues, with

the exception of perhaps something like the path seg-
ments for debugging (but one would presumably want
to use it to debug on a non-multithreaded program first
for accuracy). There could also be the option to use the
GPU instead, though that would be difficult to do since
it would probably require doing a lot more things from
scratch.

6 Miscellaneous
6.1 Sphere of Influence

Originally, we had planned to use a Sphere of Influence
approach, similar to that used by Yapo in his rendering
of lunar eclipses [I0]. We had it so that normal ray
tracing was run until it intersected a predefined sphere
of influence, then would get affected by the gravitational
field. This ended up looking bad as there was a quite
obvious circle of distortion, which could be alleviated by
making the sphere bigger, but at that point, it would
make more sense to just have the rays be bent from the
beginning.

Figure 6: One of the early renders with SOI

6.2 Intersection Problems

Figure 7: Buggy intersection algorithm render

The intersection algorithm was somewhat problem-
atic, as often it would just phase right through the ob-
jects. We were able to solve this by using an adaptive
timestep when the photons approached the intersect-
ing objects. This was rather challenging to debug and
is still not perfect. This figure showcases some of the
buggy output with the debug magenta pixels mentioned
in the path calculation algorithm. The gray pixels on
the black hole are rays that shot through the black hole
and intersected the back wall.

6.3 “White” Hole

Figure 8: a “White Hole”

The figure was just generated as a novelty. Rather
than having the photons get pulled in by the black hole,
it is instead pushed away. This is simply done in code
by negating the acceleration. It produces a rather in-
teresting result.

References
[1] White blue graph paper
https://www.xmple.com/wallpaper/

grid.

white-blue-graph-paper-grid-512x512-c2-ffffff-4169e

[2] Riccardo Antonelli. 2d black hole visualization.
https://rantonels.github.io/starless/
2015.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools, 2000.

[4] Oliver James, Eugenie Tunzelmann, Paul Franklin,
and Kip Thorne. Gravitational lensing by spinning
black holes in astrophysics, and in the movie in-
terstellar. Classical and Quantum Gravity, 32, 02
2015.

[5] Jean-Pierre Luminet. Image of a spherical black
hole with thin accretion disk. Astronomy and As-
trophysics, 75:228-235, 04 1979.

https://www.xmple.com/wallpaper/white-blue-graph-paper-grid-512x512-c2 -ffffff-4169e1-l2-4-44-a-0-f-20-image/
https://www.xmple.com/wallpaper/white-blue-graph-paper-grid-512x512-c2 -ffffff-4169e1-l2-4-44-a-0-f-20-image/
https://rantonels.github.io/starless/

[6]

Chris Orban. Black hole derivation. https://wuw.
asc.ohio-state.edu/orban.14/stemcoding/
blackhole_derivation_slidel.png) 2019.

Alex Peterson. Spacescape. https:
//alexcpeterson.comn/spacescape/.

Daniel Shiffman. 2d black
hole visualization. https://
thecodingtrain.com/CodingChallenges/
144-black-hole-visualization, 2019.

Eite Tiesinga, Peter J. Mohr, David B. Newell,
and Barry N. Taylor. The 2018 codata recom-
mended values of the fundamental physical con-
stants. http://physics.nist.gov/constants,

Theodore Yapo and Barbara Cutler. Rendering
lunar eclipses. 2009.

https://www.asc.ohio-state.edu/orban.14/stemcoding/blackhole_derivation_slide1.png
https://www.asc.ohio-state.edu/orban.14/stemcoding/blackhole_derivation_slide1.png
https://www.asc.ohio-state.edu/orban.14/stemcoding/blackhole_derivation_slide1.png
https://alexcpeterson.com/spacescape/
https://alexcpeterson.com/spacescape/
https://thecodingtrain.com/CodingChallenges/144-black-hole-visualization
https://thecodingtrain.com/CodingChallenges/144-black-hole-visualization
https://thecodingtrain.com/CodingChallenges/144-black-hole-visualization
http://physics.nist.gov/constants

Figure 9: No black hole [I] Figure 10: With black hole

Figure 11: Images showcasing the distortion

Figure 12: No Blackhole Figure 13: M=100 Figure 14: M=200 Figure 15: M=400

Figure 16: The generated space box with varying masses of black holes

Figure 17: Primitive View (from the
side)

Figure 18: No black hole Figure 19: With black hole

Figure 20: Images showcasing reflections

Figure 21: Primitive view, top down Figure 22: With black hole

Figure 23: Images showcasing multiple reflections

Figure 26: Same positions, but left

Figure 24: Primitives view Figure 25: Ray Traced
one has double the mass

Figure 27: Mutiple black holes

Figure 30: With black hole and color
box

Figure 28: Primitive view, top down Figure 29: With black hole

Figure 31: Images showcasing multiple black holes offset on 2 axes

Figure 32: Primitive view, top of . L .
disk Figure 33: Primitive view, botto

of disk

Figure 34: Render

Figure 35: Images showcasing accretion disk distortion

Figure 36: Primitive view Figure 37: Render

Figure 38: Images showcasing accretion disk distortion with a more realistic disk

	Introduction
	Related Work and Resources
	Implementation
	Path Algorithm
	Intersection Computation

	Results
	Accuracy
	Performance

	Limitations and Future Work
	Lighting
	Performance

	Miscellaneous
	Sphere of Influence
	Intersection Problems
	``White" Hole

