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Figure 1. Bunny sitting in grass. Rendered on AiMOS

Abstract
Ray tracing is a computationally expensive rendering tech-
nique used to create detailed images capturing scenes fea-
turing complex geometry, lighting, and other effects. This
method is typically constrained by its runtime, however this
can be significantly reduced using parallel computing. We
propose a novel, massively parallel, image rendering method
used in the creation of ray-traced videos. Our method utilizes
sample images to create a cache mapping color to on-screen
positional data, reducing runtime when capturing images
in-between various camera positions.
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1 Introduction
Ray tracing is a notoriously expensive rendering method.
As such, much of the literature surrounding this technique
focuses on simplifying or otherwise modifying effects such
as soft shadows [7], refraction [24] and reflection [5, 20]
such that they are optimized for runtime efficiency. Other
approaches introduce parallel programming either through
multi-threading [4] and/or distributing the workload across
multiple processors [17]. Another technique involves classi-
fying rays based on subdivided regions of space to accelerate
object intersections [1]. However, these approaches typically
optimize for some variant of classic ray tracing or implement
completely alternate techniques for the purpose of capturing
static images.

This paper addresses these major drawbacks of the above
methods by using parallel programming, color caching, and
ray tracing to render complex effects without suffering the
traditionally coupled runtime costs. While these previous
algorithms display significant advancements in the fields of
computer graphics and parallel programming, some appli-
cations such as video production demand many ray traced
frames to be produced in batch. These applications are the
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source of our motivations for this project and are the recip-
ients of the speedups our approach provides. However, a
major drawback to our approach is the introduction of ren-
dering artifacts. These artifacts can be reduced by decreasing
the camera movement between frames and/or providing ad-
ditional sample images to the algorithm.

2 Related Works
Of all of the components used in our approach, the most inte-
gral of them is ray tracing. Previous literature [8, 23] offer an
in depth explanation of exactly what ray tracing is and the
effects it can generate. Efforts to optimize this method have
been a topic of research since ray tracings conception. Ray
tracing in parallel and across multiple nodes has accounted
for a large portion of this research, [13] however, these stud-
ies were limited due to the compute power the researchers
had available to them. Other works in this area [2] have
utilized message passing to create more complex parallel
systems through information distribution. In our implemen-
tation, a similar type of caching is used to avoid unnecessary
ray tracing. Work [11] has been done specifically to enhance
the run time of passing data between processes similar to
our application such as which looks into minimizing the
unnecessary copying of messages between processes.

3 Ray Tracing
Ray tracing has a relatively simple implementation, described
by the following pseudocode:

Algorithm 1 Trace Ray
Cast 𝑟𝑎𝑦 into scene
for objects in scene do

if 𝑅𝑎𝑦 intersects object then
Intersect with 𝑙𝑖𝑔ℎ𝑡𝑠 ⊲ Cast shadows
for number of refection bounces do

Trace Ray(𝑥 ,𝑦) ⊲ Cast reflected ray
end for ⊲ Additional affects can go here

end if
end for

Ray tracing involves firing one or more rays through the
center of each pixel, x𝑖 , y𝑗 , from the camera (eye position)
and returning color data regarding any hit objects. The color
data collected from these rays is drawn to the screen. Addi-
tionally, users can layer additional effects such as shadows,
anti-aliasing [6], refraction, reflections and participating me-
dia [16] to increase rendering quality and realism. Each addi-
tional stacked effect massively increases the run-time of the
algorithm since certain effects such as reflection cause rays
to be traced recursively and other effects such as anti-aliasing
require multiple rays to be cast per pixel.

When rendering scenes involving complex geometry, run-
time is slowed further by the base algorithms need to check

each rays intersection with each primitive object. Spatial
data structures such as KD-Trees [3] and Bounding Volume
Hierarchies [12] have been used to speedup primitive ray
collisions. However we chose to omit these data structures
in our implementation in order to focus on the speedups
provided by our parallelism and other accelerative methods.

3.1 Complex geometry
Despite not implementing a spatial data structure for ray
intersections, we still require complex geometry to be dis-
played in our scenes. We choose to implement fast trian-
gle intersections, avoiding the expensive step of calculating
whether a ray intersects a plane [19]. It accomplishes this by
mathematically translating one of the triangle’s vertices to
the origin and aligns the other two with the 𝑦 and 𝑧 plane.
It then also translates the ray such that it aligns with the 𝑥
axis. This is visually demonstrated in Figure 2.

Figure 2. Transformation of triangle and ray [19]

4 Caching
As a camera pans across a scene, many of the pixels in inter-
mediary frames share the same (or approximately the same)
pixel color throughout the motion. However, conventional
methods are forced to ray trace each of these images individ-
ually. To avoid this unnecessary work, our algorithm caches
information from two fully ray traced images (those at the
beginning and end of the camera’s panning movement) to
infer pixel color values of intermediary frames. As our algo-
rithm ray traces the sample images, it intermittently stores
pixel information into a global cache.

Our cache is a hash table mapping a pair of doubles (rep-
resenting an (x, y) coordinate) to a vector of Pixels. A ’Pixel’
is a struct containing an (𝑥 , 𝑦) coordinate, the RGB value of
its corresponding (𝑥 , 𝑦) location on screen, and an id storing
which frame 0...num_samples in the movement the data was
cached from. Using this data, the intermediary frames com-
pare the colors of cached pixels and the distance traveled
by the ray before an intersection. At first, we attempted to
make pixel color inferences by only using distance traveled
before intersection.
However, this method had a tendency to leave artifacts

on surfaces with gradient colors, such as the ball objects. To
avoid these artifacts, we added a comparison of the cached
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Figure 3. Color map when inferring pixel color using travel
distance of rays. Color indicates sections where the distance
travelled between sample image and frame is different. Red
was the closest, followed by green, followed by blue.

pixel colors. As we did this, we discovered that we needed
a epsilon that allows for some minor change in color. If the
epsilon was not used when comparing RGB pixel values in
our cache, subtle changes in color created additional artifacts
(4).

4.1 Artifact Reduction
Our approach allows for users to upload sample reference
images to increase cache hits. This leads to reduction in both
runtime and quantity and severity of artifacts as show in
Figure 5.

5 Parallel Computing
Our approach utilizes MPI, Pthreads, and parallel I/O with a
high degree of interaction to supply information to a globally
distributed cache. This cache contains data relating to user
provided sample images. Once the provided sample images
have been uploaded, their data is distributed to all MPI ranks
by the root process directly into respective child process
cache. These ranks periodically send each other sections of
their local cache in order to minimize duplicate work across
other processes. Each MPI rank produces one or more frames
of the final output video through a combination of cache
look ups and ray tracing.
If a process cannot pre-determine the color of a location

on screen via a cache lookup, it is ray traced and added
to rank𝑘 ’s local cache, we refer to the results of these new

Figure 4. Example artifacts from too lenient of a color dis-
tance epsilon. The white circle on the top of the larger ball
is a direct result of this. Highlighted colors indicate re-ray
traced pixels

ray traces as ’discoveries’. Once rank𝑘 has made enough
discoveries, it distributes this newfound data to all other
ranks, who then add it directly into their local cache for
future use.

Figure 6. Still frame of rendered video (left) vs visualization
of cache hits (right). Pink pixels indicate a re-ray traced loca-
tion. Red pixels indicate cache hits. No highlighting indicates
the resulting pixel color matched between the first and final
frame

5.1 MPI
Each MPI rank is assigned to render a variable number of
frames. Each of these ranks has a local Image object contain-
ing RGB data in a form that can be easily written to a file
either serially or in parallel.
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Figure 5. Example progressive artifact reduction via addi-
tional (pre-rendered) image uploads. In order from top left
to bottom right: fully ray traced frame, frame with three
uploaded reference images, one uploaded reference image,
no reference frames

Figure 7. Internal representation of our cache

5.1.1 Image Cache Lookup. While rendering any frame,
MPI rank𝑘 checks its local cache for matches. If a match is
found, the color data is taken from this match, if not, a new
ray is fired into the scene and the resulting color is cached
and distributed to other processes.

5.1.2 Cache Data Distribution. Once rank𝑘 generates
enough ’discoveries’, these hash table entries are broken
down into primitive types and distributed through an MPI
broadcast call to all other processes. Each of these processes

then reconstructs the hash table entries and inserts them into
their local cache to be used for future use. Our current imple-
mentation of this data distribution is not optimal. The time
demanded for inter-processor communication between two
(or more) MPI ranks varies based on the size of the message
being sent as well as the processes sending and receiving
them [14]. As such, our application should allow for user-
specified processor maps [14] to optimize inter-processor
communication. Additionally, when an MPI rank reaches
enough discoveries in our algorithm, it distributes all of them
to all other ranks despite the fact that some of these ranks
have no need for this cached data. Alternatively, we could
implement a communication algorithm that allows ranks
to pre-compute their ’ray traced’ areas. These ranks would
then lodge a global request to see if any other ranks have
ray-traced that specific region. Algorithms utilizing proxy
processes allowing for optimized communication between
threads would be an ideal candidate for this purpose.[21]

5.1.3 Checkpointing. Our algorithm implements check-
pointing in the form of periodic image saving once a variable
number of images are finished rendering. When combined
with parallel image uploading, this behaviour ensures that
jobs can be paused and resumed with little to no additional
run time. Other works have explored non-blocking check-
pointing through the use of a scheduler and markers [9],
however checkpointing after every batch of images is suffi-
cient for our application as the cost of re-computing some
lost data is less than the overhead of implementing a new
checkpointing algorithm.

5.2 Multi-Threading
We implement multi-threading for ray tracing as a second
form of parallel computing. Threads are created and dis-
patched to each pixel x𝑖 , y𝑗 when rendering an image. The
color data collected by these threads is aggregated, sent to
the local cache, and used to set the color of the pixel within
the local image object.

Before choosing Pthreads for our implementation, we first
attempted to use CUDA. We quickly ran into problems as we
attempted to re-structure our program (originally designed to
ray trace one image at a time completely serially) to allow for
the use of CUDA. After multiple attempts to rewrite the code
base, we determined that we would have to restructure the
entire application to implement it. Our application creates
batches of threads, dispatches them across a portion of the
image and then joins them back into the calling process so
their discoveries can be shared with other processes.
In testing, we observed that the more weakly scaling ef-

fects we applied to each rendered frame, the greater our
relative speedup when using Pthreads. However, in images
that had little to no visual effects, the non-threaded pro-
gram typically ran faster. This is likely due to the overhead
of creating and managing threads outweighing the cost of
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simply rendering these frames in serial. Due to this, we ran
into problems running multi-node jobs with Pthreads on the
AiMOS supercomputer as they would timeout as a result of
the job time limit.

6 Results
We have run our benchmark tests on AiMOS across multiple
nodes and ranks on the el8-rpi cluster. To account for the
thirty minute time limit for submitted jobs on the super-
computer, we ran many of our larger tests with the reflec-
tive_spheres.obj file, the same test as displayed in Figure 5.
However, other tests were conducted on scenes with signifi-
cantly more complicated geometry.

Figure 8. Example of complex geometry used in our serial
benchmark test

Our approach when rendering multiple frames of scenes
with complex geometry significantly outperforms ray trac-
ing each frame of the same scene individually. In Figure 9,
a visually demanding test case, the serial implementation
took 70 minutes to generate 16 frames while our approach
computed the same 16 frames in 13 minutes.

6.1 Strong Scaling
In our strong scaling benchmarks, we computed 256 interme-
diary frames across different ranks using reflective_spheres.obj
as our test input.

Table 1. Strong Scaling Across Different Problem Sizes
(Time in Seconds)

# Ranks 32 Frames 64 Frames 128 Frames

4 56.7 104.8 341.7
8 38.2 66.9 130.3
16 30.9 49.8 84.0
32 28.9 42.9 72.7

Figure 9. Plot of Table 1

Table 1 demonstrates our applications ability to strongly
scale with a given problem set. While our multi-node jobs
timed out on larger cases, our single node results show strong
scaling has been achieved as we increase the number of MPI
ranks used to compute a variable number of frames of the
same test scene.

6.2 Weak Scaling
For the below weak scaling test, we increased the number of
samples taken with the number of ranks remaining constant
on the same test case.

Table 2. Weak Scaling

# Ranks Frames Time

16 16 13.3
32 32 29.8
64 64 TIMEOUT
128 128 TIMEOUT
256 256 TIMEOUT

Table 2 displays our results from our weak scaling test
case across multiple nodes. Our test cases across multiple
nodes timed out before any output was produced. This is
likely due to a massive increase of traffic on AiMOS over the
week prior to the projects deadline. In its current state, our
algorithm sends data from each process to every other pro-
cess. This may be the source of our multi-node slowdowns
as all single node cases scaled as expected.

Using the same test case as above, but holding the number
of ranks to one, we can clearly see how our cache improves
our running time.
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Table 3. Weak Scaling (single node)

# Ranks Frames Time

1 1 14.2
1 2 17.7
1 4 25.3
1 8 39.9
1 16 70.9
1 32 129.9
1 64 242.7
1 128 479.33
1 256 1065.98

Table 3 displays that one node rendering multiple frames
does not create a linear time increase as frames are added to
the job. This is due to the rendering processors accesses to
previously cached data from prior frames. The utilization of
this data means it is able to re-use work and thus spend less
time ray tracing.

Table 4. Weak Scaling (single node cont.)

# Ranks Frames Time

32 32 30.9
32 64 41.6
32 128 69.2
32 256 146.5

Table 4 displays a larger weak scaling case in which 32
MPI ranks are assigned to an increasing number of frames.
This data displays a roughly linear increase in time spent
rendering as we increase the number of frames of a job.

The below scaling experiment shows how increasing im-
age effects scales with sixteen ranks and the same number
of image samples.

Table 5. Weak Scaling (VFX)

# Shadows Bounces Time

0 0 265.9
10 1 279.82
25 2 296.1
50 4 321.44
100 8 368.75

In Table 5 we can see how the time for the full render starts
to rise as the number of effects increases. It appears that we
have achieved a logarithmic function when plotting time
to number of applied visual effects. This intuitively makes

sense since most visual effects are clustered in specific parts
of an image/scene. Thus, as more visual effects are added,
they do not increase the quantity of pixels that need to be
re-ray traced.

Figure 10. Example start and ending images of the ’Weak
Scaling (vfx)’ tests with two bounces and ten shadow samples

Figure 11. Graph of the results from scaling the number of
images compared to different numbers of ranks

7 Conclusion
We have presented a novel algorithm for rendering ray-
traced image samples used in creating high frame rate videos,
optimized through massively parallel multi-processor com-
munication. The method is based on previous works relat-
ing to inter-processor caching [18] and multiprocessor in-
formation optimization [22]. By allowing users to upload
sample ray-traced images, we improve rendering time for
multi-frame batched jobs. The resulting method provides
a speedup when compared to conventional methods and
our test-images demonstrate that little information is lost in
the inference process utilizing the globally updated cache.
This method is therefore useful in applications requiring
large quantities of ray-traced images of the same scene to
be rendered.
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7.1 Limitations
7.1.1 Run time. Even when fully optimized, ray tracing
is an expensive algorithm when multiple effects are used in
tandem. Due to the time limits set on our jobs by AiMOS, we
were largely unable to time these large-scale tests onmultiple
nodes. This left us with relatively primitive benchmarking
scenes that work for the purposes of testing our relative
speedup, but leave us with lacking visuals and test variety.

7.1.2 Artifacts. Currently, this technique causes severe
artifacts in certain test cases, specifically cases in which mul-
tiple objects are clustered in space. Ideally, the algorithm
should intuitively tell which regions of the image contain
clustered objects and manually ray-trace these portions, per-
haps even allowing for users to specify these regions ahead
of time. This would involve supplying each rank with scene
data as well as re-working the existing ray tracing architec-
ture to accommodate this spatial component.

7.1.3 Lack of Resources. As we preformed experiments,
we ran in to many problems caused by the lack of resources
available on AiMOS. Not only did it take hours, and occa-
sionally days to run jobs that required more than one node,
but often these jobs would either error out due to system
problems out of our control or exceed the short time limit.
When running tests locally to gauge expected run times
across multiple nodes, we would get varying run times from
twenty seconds to over twenty five minutes for the same test
case. When running these same test cases through a slurm
job, they would almost always time out. We did our best to
try and find the source of these issues, but we were unable
to find the source of these problems in our code. Without a
time limit, our code would be able to successfully complete
its render on all of these larger-scale test cases.

7.2 Future Works
7.2.1 Parallel Improvements. Ideally, the work done by
ray tracing should be done in parallel by CUDA threads. This
would massively speedup the program and allow for greater
testing suites capable of scaling both ranks and threads. Cur-
rently, our application optimizes by using cached color data
of provided images. Our main algorithm could be expanded
to make more informed decisions based off of ray intersec-
tion data, such as what type of material a ray hit and how far
the ray traveled. Another area of improvement would be to
implement a more advanced method of inter-processor com-
munication such as nearest-neighbor communication [15]
to prevent excess information sharing between nodes.

7.2.2 Graphics Implementations. While we currently
use fast triangle intersections [19], the use of an spatial data
structure such as a Bounding Box Hierarchy [3] or Bounding
Volume Hierarchy [12] could be implemented to speedup
scenes containing complex geometry.

Currently, all frames are captured on a straight line from
the starting position to the ending position with the same
focal point. Our application allows for users to move the
camera along a B-spline curve [10] computed using four
points provided by the user. This implementation is not yet
finalized and results in unexpected path behavior. As such,
it is not included in the work of this paper. However, this
can be improved on in the future to offer more engaging and
varied camera paths. Additionally, a working and accurate
refraction implementation would provide additional effects
to test.

7.3 Distribution of Work
7.3.1 Jenay. Responsible for saving .ppm images, parsing
of triangle .obj files, and fast triangle intersections. Created
initial cache pre-parallelization as well as cache comparison
algorithm. Implemented multi-threaded git branch of code
via Pthreads, and B-spline algorithm.

7.3.2 Liam. Responsible for MPI parallelization, cache rep-
resentation in parallel/multiprocessor communication on
AiMOS, refraction, sample image uploading, parallel image
upload, CUDA discovery and re-write phase, data synchro-
nization across processors.

7.3.3 Both. Paper Figures (graphics and timing data), CMake
project building on AiMOS, artifact reductions, writing of pa-
per, relevant literature readings, checkpointing, re-working
of pre-existing code to allow for parallel implementation,
github version control.
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8 Blooper Images

Figure 12. Holey bunny due to too big of an epsilon during
triangle intersection

Figure 13. Blur from lack of color distance epsilon when
interpolating

https://doi.org/10.1109/38.41466
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Figure 16. Incorrect refraction of rays through glass ball

Figure 17.Deformed bunny due to extensively large panning
motion without sufficient sampling

Figure 14. Triangle intersection with reversed normals

Figure 15. Error in algebraic transformation of mesh loca-
tion when rotating objects
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