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Figure 1: Ray tracing participating media through stained glass. Note the colored light, color bleeding, and volumetric shadows.

Abstract

We extend the CSCI 4350 HW3 code base to allow for ray trac-
ing in participating media. To do so, we incorporate real-time
shadows in OpenGL and accumulate radiance by ray marching on
HW3’s anti-aliasing rays. We also implemented raycasted shadows
as a backup for shadow map shortcomings. Additionally, we ex-
tend HW3’s light code to allow for spotlights and colored lighting
through stained glass. This only approximates the effect of par-
ticipating media by assuming light only scatters once, and a better
approximation can be achieved by incorporating multi-scatter algo-
rithms.

1 Introduction

Beams of light are often visible in daily life: car headlights in the
rain, a window on a sunny day in a dusty room, a flashlight illu-
minating the smoke of a campfire, see figure 2. However, standard
ray tracing techniques can only calculate the effect of light on the
surface of objects, not in the volume between them. Much research
has been done on replicating this effect, called participating media,
in computer graphics, and as a result, there are many techniques for
approximating it.

2 Prior Work

A real-time technique was introduced in [T6th and Umenhoffer
2009] which used ray-marching to approximate the effect of
participating media. To achieve real-time speeds, they used shadow

mapping for visibility calculations (introduced in [Williams 1978])
and took interleaved samples, as described in [Keller and Heidrich
2001]. Their calcuations are described in section 3.1. Since we
are not aiming for real-time speeds, we did not use interleaved
sampling. However, we implemented shadow mapping in OpenGL,
using [Williams 1978] as a guide.

This technique first renders a image from each light source’s
perspective which encodes the depth of objects to the light as
darkened pixels in a texture. Another render pass from the camera’s
perspective compares the z-position on visible surfaces to the depth
texture (after some matrix projection), and renders shadows if this
z-value is less than the texture value.

[Wyman and Ransey 2008] developed an approach to render
shadow volumes in homogeneous single scattering media that also
utilizes shadow maps and ray marching but improves the efficiency
of rendering shadow volumes by only performing ray marching in
areas in the shadow map that have shadows. [Wyman and Ransey
2008] were also able to modify this method to apply textures to the
spotlights, which adds multiple colored light volumes to the render.

Thus far we have only looked at single scattering effects in
participating media using ray marching. [PremoZe et al. 2004]
proposed an approach to approximating multiple scatter ray march-
ing by voxelizing light volumes and computing the attenuated
radiance for each light source in a precomputation step. This



Figure 2: Image by Bonnecaze, M.: the Pantheon in Rome, a clear
example of participating media

approach in [PremoZe et al. 2004] also allows for rendering effects
in non-homogeneous participating media.

3 Mathematical Basis
3.1 The Radiative Transport Equation

The mathematical core of the participating media effect is the ra-
diative transport equation. A ray of light can be represented by the
equation Z(s) = Zo + s, where T is the starting position, & is
the direction, and s is a parameter to represent the distance along
the ray. In homogeneous participating media, which does not emit
light, the radiative transport equation gives the change in radiance,
L, along the ray as:
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where 7 is the density of the participating media (the chance of
collision), a is the albedo (the chance of scattering upon collision),
@' is the direction to the light source, and P(&’,) is a phase
function which produces the probability density of the direction of

light scattering.

Since this equation is too difficult to solve in real-time,
we simplify the equation by assuming that light can only
scatter once. Following the work in [Té6th and Umen-
hoffer 2009], this assumption produces the approximation
Li(Z(s),d) ~ 7a [, L(Z(s),d")P(d’, &)dd’, where L; is the
accumulated radiance from one scatter. Using the fundamental
theorem of calculus and solving analytically, as in [T6th and
Umenhoffer 2009], produces the approximation we use:
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where v(Z) is a visibility function that returns 1 if z is fully illu-
minated and O if z is fully in shadow, d is the distance to the light
source, ® is the power (energy) of the light source, and both e and
m have their standard mathematical values.

3.2 Spotlights

A spotlight is a light source that emits light in a specific direction
in a defined conical shape. The angle of the cone (6cutoss), known
as the cut-off angle or the sector’s angle, can range between 0
degrees and 90 degrees. To implement spotlighting, we needed to
determine if a point (p) is within the spotlight’s cone.

As each light source is represented by a quad in the scene,
we use the normal of the face to determine the spotlight’s direction.
We will call the direction of the spotlight d.

We then need to determine the direction of point p to the
centroid of the spotlight, c. Let this value be v. This can be
calculated as follows:

v=c—p (@3]

Using this, we can determine the cosine of the angle between d and
.
cos(fqn) =d-v 3)

Finally, to check if point p is within the cone of the spotlight, the
following must be true:

cos(faqv) > cos(Bcutors) “4)

If this is true, we can calculate how far inside the cone point p is to
get the value 1, the intensity of the spotlight at point p.

1 — cos(Oav)

t=1- —
1 — cos(Ocutofs)

(&)

where ¢ is a floating-point value between 0 and 1.

3.3 Colored Lights

We wanted to implement a stained glass effect by coloring illumi-
nated geometry and participating media based on semi-transparent
materials between this point and the light source. To do this, we
added an alpha (opacity) value to the Materials class, with an alpha
of 1 being fully opaque and an alpha of 0 being fully transparent.
To add two colors together, we decided to use the following equa-
tion, as it factors in the alpha of the Material to prevent the resulting
sum of the two color from being greater than [1,1,1], which would
be an invalid color value.

b1 =bo(1 — )+ ca 6)

where b; is the resulting accumulated color (“blend”) value, bo is
the current blend value, c is the color being blended into by, and «
is the opacity value (between 0 and 1) of c.

4 Implementation

As mentioned, we take advantage of the processes and data struc-
tures present within HW3. Particularly, we make heavy use of the
Ray, Hit, Raytracer, and OpenGLRenderer classes.

4.1 Spotlights

In the provided code, all light sources are assumed to be point
light sources, meaning that the scene is illuminated from all
directions.  Spotlights are a common depiction of volumetric
lighting, as spotlights have a defined conical shape that is emitted
in a defined direction. Light sources are defined as a face with a
material with an emission value greater than [0,0,0]. To specify
the cut-off angle in the obj files, a new token “c” was added. The
cut-off angle must be a floating-point value between 0 and 90. If
this token is included, the light source is stored as a spotlight source.

We use equations (2), (3), and (4) to determine if a point is
within the spotlight. To determine the intensity of the light,
assuming that the point is within the spotlight’s cone, equation
(5) is used to produce an intensity value between O and 1. If
a spotlight is being used, this intensity value is calculated and
multiplied to areas where the point light source was used to clamp
the illumination to be within the spotlight’s cone.



4.2 Ray Marching

As mentioned in [T6th and Umenhoffer 2009], simulating
participating media by ray marching can be done as a post-
processing effect. Consequently, we run a ray marching function
on each anti-aliasing ray produced by the HW3 code base. This
function takes the ray, current pixel color, and hit data (stor-
ing the ray parameter s of the nearest hit) as input, and produces
an adjusted pixel color that accounts for participating media effects.

To do so, we calculate the light accumulation at discrete
steps along the ray, using equation (1). The length of these steps is
determined by a command-line parameter, ray_march_step.
The density 7 and albedo a are determined by command-line
parameters air_density and air_albedo. We make sure
to accumulate light at the start of the ray, and we make the
further simplifying assumption that light scatters equally in every
direction, producing a constant phase function.

Thus, the function requires access to the light position and intensity
(accessible through GLOBAL_args->mesh->GetLights ()),
as well as a method to calculate the visibility of any given position
along any given ray. This visibility functionality is provided by
shadow mapping or shadow rays, as described in sections 4.3
and 4.4. The results of ray marching while using only spotlight
intensity as a visibility function are provided in figure 3. We found
visually interesting results with physically impossible albedo
values, such as 10.0.

Figure 3: Ray marching using spotlight intensity as visibility. Each
image has a ray march step value of 0.1 and an air density value of

0.1. From left to right, top to bottom, the albedo values are 0.1, 0.5,
1.0, and 10.0.

4.3 Shadow Mapping

To extend HW3 to use shadow maps, extensive use of OpenGL
is required. We make two changes to the processing pipeline in
OpenGLRenderer.cpp: a new setup stage and a new render
stage. In the setup stage, a framebuffer is configured to read depth
information, and a texture is configured to store depth information
received from the frame buffer. The data type of the texture must
be GL_DEPTH_COMPONENT. After initializing the framebuffer to
an unsigned int depthMapFBO and the texture to an unsigned int
depthMap, the following code binds the two together for later use

in the rendering pass:

glBindFramebuffer (GL_FRAMEBUFFER, depthMapFBO) ;

glFramebufferTexture2D (GL_FRAMEBUFFER,
GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, depthMap,

The framebuffer must then be unbound as the primary framebuffer
before proceeding.

The other sections of the setup stage, such as configuring
vertex buffer objects, proceed as normal. Then, before the
scene is drawn, the new render stage takes place. Similar to
a standard rendering pass, an MVP - Model, View, Projection
- matrix is constructed. However, this MVP matrix translates
a position in world space into a position in the light source’s
view space. As such, this matrix is typically referred to as
the depthMVP matrix. In our implementation, the model
matrix is the identity. Since we are using spotlights, the pro-
jection matrix is a perspective distortion matrix constructed by
glm: :perspective<float>(45.0f, 1, 2, 50.0f).
Lastly, the view matrix is constructed using the glm: : lookAt
function, creating a view matrix from the light’s position facing
the direction of its normal. However, if the light’s normal vector is
parallel to the camera’s up direction, this function fails. We detect
this case by checking if the cross product of these directions is
zero, and in that case, we rotate the camera’s up direction by 90
degrees about the z-axis before using glm: : 1ookAt.

With the depthMVP matrix constructed, we can render the
scene from the light’s perspective. After rebinding the framebuffer
and adjusting the viewport to match the colors and dimensions
of the depth texture, we use HW3’s drawVBO (mvp, m, V)
function with the depthMVP, identity matrix, and depth view
matrix as parameters. This populates the framebuffer with depth
information from the light’s perspective (due to the depthMVP
transform) and writes it to the texture (from the earlier pseu-
docode.) A sample depth texture is provided in figure 4. Then, we
unbind the framebuffer, revert the viewport, and clear the depth
and color buffers. Finally, we render the scene from the normal
perspective.

Figure 4: The depth map (left) and resulting shadows (right) of
a sample scene. The depth map is contrast-adjusted to be more
visible.

In order to see the shadows in real-time, we must send dept hMVP
to the vertex and fragment shaders. This is only done to visualize
the results of only the shadow map, and is not necessary for
participating media effects in the ray tracer. Using the x and y
values from the vertex position transformed by depthMVP, we
read the texture and compare its value to the transformed z-value.
If the fragment has a lower z-value than the texture, it is below the
depth the light sees at that position, and its color is set to black. A
small epsilon bias is subtracted from the z-value to prevent shadow
acne. The fragment and vertex shaders produce the results seen
in figure 5. Lastly, we write a function to retrieve and sample the
depth texture value and compare to the transformed z-value for any



Figure 5: Shadow Mapping in OpenGL. This is done as a precom-
putation before ray tracing and runs in real-time on an Intel(R)
UDH Graphics 630 card.

given position in world space. Unfortunately, our implementation
of this function is incorrect. In the fragment shader code, the GLSL
function texture can be used for texture lookup, but when ray
tracing, we had to reconstruct the operation of this function in
C++. Our best attempt produced the correct shadows, but at a
position far too close to the light. This effect can be seen in figure
6. As a workaround to produce the desired effect, we cast shadow
rays for each step in the ray march, but this approach is very slow
and scales poorly. See section 5.1 for more details on how this
workaround affects the scalability and render time of our program.

Figure 6: Our closest failure using shadow maps in the ray tracer.
The position of the sphere is incorrectly translated upward in light
space, but the matrix transform involved means that applying a
counteractive translation is not straightforward. Spotlight visibility
checking was disabled for this render, which has a ray march step
size of 0.1, an air density of 0.1, and an air albedo of 0.9.

4.4 Ray-Cast Shadows

In order to improve the realism of our volumetric lighting, we uti-
lized ray tracing to produce shadows and ray casting to produce
volumetric shadows.

4.41 Ray Casting

In ray casting, a ray is projected from a point in a given direction
to check for intersections, recording data about what the ray in-
tersected with in a Hit data structure. The implementation of ray
casting that we use checks for intersections between the ray and
quads and primitives (i.e. spheres). This requires every quad and
primitive to be iterated over during a single ray cast.

4.4.2 Ray Traced Shadows

We use ray tracing to determine the color of a pixel. If the initial
ray from the camera intersects with a quad or a primitive, we need
to determine if the object at that point is in shadow. This is done
by casting a ray to each light source to determine the visibility of
the point. Because of the cost of using multiple light sources and
our initial plan to use shadow mapping with our ray marching im-
plementation, we only support the use of a single light source. If
no intersection occurs during this ray cast, then that point is not in
shadow and the contribution from the light is applied to the pixel’s
color. Conversely, if an intersection occurs, then the light contribu-
tion is not applied. This allows for shadows to be applied onto the
geometry in the scene.

4.4.3 Volumetric Shadows

While ray tracing allows for the addition of shadows, this will not
produce volumetric shadows in the participating media. To imple-
ment this effect, as demonstrated in figure 7, for each step during
ray marching, a ray is cast from the current step position to the light
source. The contribution of that step will either be multiplied by
[1,1,1] (white) if there were no intersections and by [0,0,0] (black)
if the current step is in shadow. The color is accumulated through
ray marching, so this addition allows for the appearance of shadows
in the participating media. For efficiency, we only only perform this
ray cast if the current step is within the spotlight’s cone.

Figure 7: A spotlight over a sphere. The sphere produces a hard
shadow while a visible volumetric shadow can be seen beneath it.
The hard shadow is produced by ray tracing while the volumetric
shadow is produced as a result of ray marching and ray casting at
each step to determine visibility. To produce this image, the dis-
tance between each ray march step is 0.1, the air density is also
0.1, and the air albedo is 5.

Our naive implementation of volumetric shadows was inspired by
the method introduced in [Wyman and Ransey 2008]. They used a
shadow map in tandem with ray marching to produce shadow vol-
umes, where a shadow map is rendered to determine areas of occlu-
sion. This area is then used to determine if a step in the ray march
is in shadow. As we were unable to finish our implementation of a
shadow map, we opted to use ray casting to determine the visibility



at each step on the ray march. This is significantly more expensive
than using the shadow map, since each ray cast requires us to iterate
over every quad and primitive in the scene. However, one benefit
of our approach is that we can render models that are not airtight,
unlike the method proposed by [Wyman and Ransey 2008].

4.5 Colored Lights

We extend our implementation of light volumes and shadow
volumes with the ability to include semi-transparent materials into
a scene, which adjusts the color of participating media to give a
stained-glass-like effect.

To do this, we added a new attribute to the Material data
structure called “alpha”, which is a floating-point value between
0 and 1, indicating how transparent or opaque the material is. An
alpha value of 0 indicates that the material should be treated as
completely transparent while an alpha value of 1 indicates that the
material should be treated as completely opaque. We will refer
to a quad or primitive with an alpha value less than 1 as a “glass
object.” By default, a material will have an alpha value of 1. To
define a material’s alpha value, the “alpha” token was added and is
included in the material’s definition in the obj file.

4.5.1 Modifications to Hit Data Structure

We modified the Hit data structure to include two new attributes:
“blend” and “blended.”

The blend value is the total accumulated color by intersect-
ing quads and primitives. By default, the blend is [1,1,1] (white).
The blend can either be directly set to a specific color value or be
computed by adding a color to the total blend value. When adding
a color to the blend value, we use the intersected geometry’s diffuse
color and alpha values. To add this color to our blend value, we use
equation (6). The blended value indicates whether or not the blend
value was set to a specific color or is an accumulation of colors.

4.5.2 Modifications to Ray Casting

During ray casting, if a glass object is intersected, we add its mate-
rial’s diffuse color to the passed in Hit’s blend value. Intersecting
with glass objects will not be counted as an intersection; intersec-
tions are only counted for quads or primitives with an alpha value of
1. In that case, the Hit’s blend value is instead set to black [0,0,0],
indicating that the point is in shadow.

4.5.3 Modifications to Ray Tracing

During the check to determine if a point is occluded in the ray
tracing algorithm, the ray cast accumulates the contributions of the
glass objects on the color of the point through the blend value. If
the ray cast does not report an intersection with a non-glass ob-
ject, the ray tracing algorithm applies the contribution of the light
at this point. To include the accumulated color as a result of pass-
ing through glass objects, we multiply the resulting blend value to
this shade value. This produces colored illuminated areas that are
colored based on the accumulated colors of the glass objects, see
figure 8.

4.5.4 Colored Light Volumes

Lastly, we multiply the contribution of the ray march step by the
blend value based on the visibility reported by the ray cast. Recall
the blend value can span between [0,0,0] and [1,1,1] and is set to
[0,0,0] in the event of an occlusion. Therefore, this modification
allows for both the shadow volumes in participating media as well
as the ability for glass objects to color the participating media,
see figure 9. Like the previous shadow volume implementation,
we only only perform this ray cast if the current step is in the
spotlight’s cone to reduce the number of ray casts we need to do
during a ray march.

Figure 8: A spotlight above two glass objects, one red and the other
blue, coloring the illuminated areas. The colors of the illuminated
areas correspond to the colors of the glass objects between these
areas and the light source. The areas underneath both the red and
blue glass objects result in a blend of the two colors, coloring the
area purple.

Building off of the shadow map approach to volumetric shadows
proposed in [Wyman and Ransey 2008], we could similarly adapt
a shadow map implementation to consider the color at each point
in the map contributed by glass objects, in addition to recording
occlusion caused by geometry with an alpha of 1.

'

Figure 9: A light volume colored by red and blue glass objects.
Similar to the blending shown in figure 8, the participating media
underneath the red and blue glass objects are colored purple. For
this render; the distance between each ray march step is 0.1, the air
density is 0.1, and the air albedo is 5.0.

5 Shortcomings and Limitations

Our approach does produce impressive results, but we encountered
issues in implementing shadow maps and multi-scatter effects.

5.1 Shadow Mapping and Multiple Light Sources

As mentioned in section 4.3, our texture lookup function for shadow
maps is incomplete. This is a major bottleneck in efficiency im-
provements to our program, because raycasted shadows scale with
order O(s - a-r- N - M), where s is the amount of light sources
in a scene, a is the amount of anti-alias rays, r is the amount of
ray-march steps per ray, N is the pixel height, and M is the pixel
width. However, shadow maps only scale with O(s - N - M) and



can therefore render more complex scenes far more quickly. There
does exist a difficulty with extending shadow maps to multiple light
sources, since each light source would require a new render pass
and a new texture. Our approach is currently only set up to store
one depth texture, but could be feasibly extended to use an array of
depth textures.

5.2 Multi-Scatter

Our implementation of ray marching assumes that the partici-
pating media is single scatter and homogeneous. However, this
assumption is incorrect for effects such as fog and smoke. Once
we had single scatter ray marching implemented, we decided
that we would like to implement multiple scatter ray marching
in order to to render these non-homogeneous and multi-scatter
cases. However, naively, multi-scatter ray marching would be too
computationally expensive to do. [Premoze et al. 2004], however,
proposed an approach to produce multiple scattering effects in
participating media by introducing a precomputation step to speed
up the rendering process. During this precomputation step, light
volumes are voxelized and the attenuated radiance for each light
source is computed, creating a lookup table for the available
light for redistribution. At this point in the rendering step of the
multi-scatter ray marching algorithm proposed by [PremoZe et al.
2004], the contribution by multi-scattering is approximated by
summing the precomputed values along the path.

Unfortunately, the precomputation step proved to be chal-
lenging to implement, especially when trying to understand and
recreate the data structures used in the paper. We attempted
to extrapolate this information and produce multiple scattering
effects in participating media without the precomputation step.
However, the resulting implementation produced renders identical
to our implementation of single scatter ray marching while taking
significantly longer to produce the render.

6 Results

Even without shadow mapping and multi-scattering, we were able
to produce visually impressive results using the functional portions
of our program that highlight multi-colored light in participating
media. Figures 10 and 11 (also in figure 1) took roughly 15-20
minutes to render.
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Figure 10: The final result of our program. Note how the light
reflecting off of the participating media changes color when passing
through glass objects, and how the shadows are colored by the glass
objects. The glass is not rendered as transparent to highlight the
participating media effect. For this render, the distance between
each ray march step is 0.1, the air density is 0.1, and the air albedo
is 5.0.

Figure 11: Note that our approach works for any light angle. To
produce this render, the distance between each ray march step is
0.1, the air density is 0.1, and the air albedo is 10.0.

7 Conclusion and Future Work

Overall, our participating media effect is convincing for colored
light and shadows, even when using unrealistic albedo values.
However, these renders take much longer than standard ray trac-
ing. We suspect that render time would be reduced substantially
if shadow maps were functional, since they do not scale with in-
creased ray marched steps. For future work, fixing the shadow map
lookup function is paramount, and afterward, care should be taken
to implement an array of depth textures to account for multiple light
sources. Additionally, a correct implementation of multi-scatter ef-
fects would certainly slow down the program, but it would be a
valuable comparison for the accuracy of participating media effects.

8 Work Breakdown

Matthew Bonnecaze created test models, implemented both spot-
lights and colored lighting, and attempted to implement multi-
scatter ray marching. Samuel Stuart implemented ray marching and
shadow mapping. Both contributed substantially to the paper and
presentation. This project took approximately 80 hours of work,
and was split fairly evenly between both group members.
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9 Fun Bugs

Most bugs in this project resulted in completely black or completely
white images, but occasionally, the bugs were fun.

Figure 12: Bugs with shadow mapping due to incorrect texture
lookup and matrix transformations.

Figure 13: Bug resulting from a failure to convert the vertex or-
der from the exported obj file from Blender project to the format
required for HW3.



