Non-photorealistic Rendering in a

Pointillistic Style

Kelly Wang and Keegan Dant
Rensselaer Polytechnic Institute

ABSTRACT

In this paper, we describe a method for a
non-photorealistic rendering of an input 3D scene such
that the final output is rendered in a pointillistic style.
We achieve this through the use of raytracing, sending
rays to collect color and position information from a
scene and storing that information into a graph
structure, then combining the nodes collected in the
graph based on the colors of adjacent neighbors. The
graph with combined nodes then has each stored
position and color randomly processed. We present
output images that have been filtered by our algorithm
to evoke a pointillistic style.

1. INTRODUCTION

Realistic computer rendering has been a significant
pursuit in various fields of entertainment for the last
several decades. As a result of these efforts, many
successful methods for simulating real life phenomena
and generating life-accurate scenes have been
achieved. At the same time, as more of these
photorealistic methods are developed, it builds up a
foundation from which a focus on non-realistic work is
allowed to arise; in other words, as higher accuracy is
achieved, the more the ability to break logical rules is
attained. One such field is non-photorealistic
rendering, or NPR, which takes input scenes or
images, often realistic ones, and directly filters over
them to output images that appear to be done in an
artistic style.

1.1 MOTIVATION
Photorealistic rendering is certainly a powerful and
useful tool, not just for aiding in mathematical or
scientific simulation, but also has its own place in
creative projects. However, not all creative projects
require life-accurate renderings, and may at the same
time require automation of some previously manual
process to provide a certain style or look. NPR
provides a solution for such efforts.

As will be discussed in further detail below, there
are certain aspects used in traditional pointillism that
have been defined as theory. As with many other

accomplishments in computer graphics, there is a
theoretical basis from which machine code can be
written to replicate in simulations (notably physics
simulations such as with cloth and fluid). We were
interested in replicating an artistic style, especially one
with some form of logical basis that would translate
well to code. Pointillism made the most sense to us as
it involves aspects of color theory and averaging based
on neighbor dot positions and colors.

1.2 RELATED WORKS

Seo and Yoon’s work in [1] presented the results of the
analysis of notable pointillism painter Georges
Seurat’s painting and their work on a rendering
algorithm that filters over 2D image inputs. They
generate points recursively, storing them in a
parent-child structure such that hue jitter and
complementary color generation is possible in order to
mimic Seurat’s complementary color shading
technique. Our implementation differs in that we
directly render from 3D input and the data structure we
store our points in, but their techniques
aforementioned still apply.

Sugita and Takahashi in [2], like [1], also analyze
Seurat’s pointillism and the color theory it is based on.
They render their final pointillistic image through five
steps which include halo filtering, uniform randomly
rendering pure colorist pointillism dots, rendering
complementary colors, and generating an ebauche. All
except for the ebauche step were applicable to our
work. Their work also describes how to get the radius
of a similarly colored area for recreating the halo
effect, but not how to continue building it to create non
uniform size points throughout the image as we
wanted. The pointillistic halftoning algorithm they
implemented influenced our choices for generating our
point data structures around a certain radius and
colored area.

2. ASPECTS OF POINTILLISM
Pointillism was a painting style devised by Georges
Seurat and Paul Signac and was widespread during the
post-Impressionist era. It consists of placing dots

instead of strokes on the canvas to take advantage of
the viewer’s optical ability to blend the spots of color
into a cohesive image.

We focused on certain aspects of Seurat’s style of
pointillism, chromoluminarism and “halos.”
Chromoluminarism is the practice of applying patches
of different colors in close proximity such that the
colors are not mixed up close, but give the illusion of
being mixed and are perceived as a different color at
farther distances. This effect is intended to maximize
the luminance and shimmeriness of the applied paint,
and commonly utilizes the pairings of complementary

and primary colors.

Figure 1. (Left) an image showing a murky yellowish-green. (Right) A
close-up of the same image, revealing its composition of red and green.

Figure 2. A close-up of “Entrance of The Port of Honfleur” by Georges
Seurat, 1886, showcasing chromoluminarism.

The second effect found in Seurat’s work that we
focused on was the “halo” effect, where a separation
between the painting subject and the background was
achieved through a gradient starting from a subject’s
silhouette, and would often be a lighter color than the
background, though dark halos sometimes appeared.
This allowed for higher contrast and clarity of the
painting subject.
E %

Figure 3. A close-up of “A Sunday Afternoon on the Island of La
Grande Jatte” by Georges Seurat, 1884-1886, showcasing the
“halo” effect.

Our implementation would aim to replicate these

effects.

3. IMPLEMENTATION
Although we reference Seurat’s work for our
implementation of pointillism, we also decided on
certain differences from “traditional” pointillism in
some ways, mainly, we aim for varying point sizes as
well as a varying amount of space between points.
Our implementation consists of two main
components. The first is the data structure used to
contain image information, and the second is the
algorithm used to combine the information stored in
the graph so our criteria of varying point sizes and
inter-point spaces can be fulfilled.

3.1 GRAPH DATA STRUCTURE

Our method of retrieving image information is through
raycasting, and our inputs are 3D scenes set up through
OpenGL. Our ray tracing algorithm sweeps the scene
as follows:

ALGORITHM 1: Ray Tracing Sweep

div = 5;
for every row in screen_height / div
for every column in screen_width / div

// Construct a ray from the camera towards the
world position of the specified row and column
// retrieve the color returned from the ray hit
// add the color and its associated row/column
to a graph data structure

We will henceforth refer to the color and position
added to the graph as a Point.

Our point graph has the underlying structure of a
binary tree map. Each key in the map is a unique
integer (ID) identifying the associated value (the added
Point). We keep track of the largest ID that has been
entered into the graph and increment it whenever a
Point is created, ensuring each Point has a unique ID.

We choose a graph data structure because the
combination algorithm requires knowledge of which
Points in 2D space are neighboring a target Point. As
such, we also keep track of edges, or the neighbors, as
a list of IDs in the Point itself. The initialized graph
will always have a grid structure where each Point’s
position corresponds to a Point within the screen grid,
so neighbors are also deterministic upon graph
initialization, and can be found using 2D array
arithmetic:

ALGORITHM 2: Calculating Neighbors

rows = screen_height / div;
cols = screen_width / div;
set<int> tmp;

if (curr_id - cols >= 0)

// up

tmp.insert(curr_id - cols);

// up left

if (j !'= @) tmp.insert(curr_id - cols - 1);

// up right

if (cols - j != 1) tmp.insert(curr_id - cols + 1);

if (j !'= @) tmp.insert(curr_id - 1); // left
if (cols - j != 1) tmp.insert(curr_id + 1); // right
if (next_point_id + cols < rows*cols)
tmp.insert(curr_id + cols); // down
// down left
if (j !'= @) tmp.insert(curr_id + cols - 1);
// down right
if (cols - j != 1) tmp.insert(curr_id + cols + 1);

Figure 4. A visualization of initial nodes and edges/neighbors for a
graph of size 3x3

3.2 COMBINATION ALGORITHM
The method we used to combine points in the point
graph takes advantage of the underlying binary tree
map for fast access, addition, and deletion of
<ID,Point> pairs. It works as follows:

ALGORITHM 3: Combining Points

maxCombinations = 3;
threshold = 0.05;
while (points still combining)
vector<int> addList;
vector<int> deletelist;
for (points in graph)
if (point.timesCombined < maxCombinations &&
point is not in deletelist)
//Find the neighbor point that is closest in
color using the distance formula and whose
distance is less than threshold
//Get average weighted position and color of
the two points
//Combine neighbor sets, excluding points
being combined, and clean up all neighbors to
match new Point index
//Make new point and add to addList
//Add old two points to deletelist

Both points being combined must have not been
combined maxCombinations amount of times before
and must not already be in the deleteList vector. Both

vectors used are so that the point graph is not edited
during one loop of the algorithm. This does have a bias
to combine with points that have not been combined
during the loop and we believe this may lead to some
artifacting, as will be discussed in a later section.

3.3 POST-PROCESSING

Following the application of our combination
algorithm, each Point in the graph has two effects
applied to it.

3.3.1 POSITION JITTER

We add random jitter to each Point’s position in the
form of a random 2D vector. The magnitude is then
scaled depending on the number of combinations a
Point has undergone: Points that were combined one or
less times received a much larger jitter than Points
combined more than once.

3.3.2 COMPLEMENTARY COLORS
To properly account for the chromoluminarism effect
found in Seurat’s paintings, the color of each Point
also has a random chance of being altered depending
on its luminance (higher chance as color gets darker).
Specifically, the hue might stay the same, or be
shifted in either direction such that the new hues are
complementary and equidistant to the original hue. We
also have a random chance of heightening the
saturation by a random amount. The color is then
decided as follows:

ALGORITHM 4: Complementary Colors

origColor = point.getColor();
// our representation stores color using RGB, so we
first convert from RGB to HSL
newColor = RGBtoHSL(origColor);
shade_prob = 1 - origColor.magnitude();
hueShift = 0;
if (RandInRange(©,1) < shade_prob)
dir = RandInRange(9,1);
// 45 is approximately a quarter of the color
wheel, which fulfills the aforementioned criteria.
if (dir > 0.5) hueShift = 45;
else hueShift = -45;
newColor.hue += hueShift;
newColor.hue modulo 360;
if (RandInRange(9,1) > 0.5)
newColor.saturation *= 1 + RandInRange(©,1);
if (newColor.saturation>1) newColor.saturation = 1;
// we then convert from HSL back to RGB.
newColor = HSLtoRGB(newColor);
point.setColor(newColor);

3.33 FILE OUTPUT

In order to render with OpenGL we created a separate
program due to the existing implementation of
Homework 3’s OpenGL interface. To pass our point
graph to this separate program we wrote it to file. This
file simply contains the width and height of the
original image on the first line and then for each Point
its RGB color, its x and y screen position values in the
graph, and the number of times it was combined.

34 RENDERING WITH OPENGL

As stated previously a separate program was created to
render our final image output. This program simply
reads in the file written for the point graph, calculates
the position transformation for rendering to an
OpenGL window, and calculates the radius of every
point based on its number of times combined and the
width/height of the window along with an input
parameter. Most of the OpenGL code used is
boilerplate needed to create an OpenGL window and
actively render. To place the circles on the screen
glColor3f() provides the coloring to the next circle and
the circle is drawn with
glBegin(GL_TRIANGLE FAN) and gl Vertex21f()
using cartesian coordinates. glClearColor() is
additionally used as a parameter for the background
color of the image as later described.

4, RESULTS

All of the results we present here were rendered on

a Lenovo Thinkpad T480s laptop with an Intel 17 4-
core processor. We were successfully able to produce
2D image output of a given input image in a pointillist
style while maintaining the composition of the input
image and resolution. Our solution’s performance time
is as expected with very little time needed to create
output. As well as images in a pointillist style, we
were able to create other interesting output with
several user guided parameters as shown in section 9.

4.1 PERFORMANCE

Our graph’s ability to track IDs and each Point’s
ability to track its neighbors allows for fast access of a
Point and initial population of the graph is relatively
quick; a resolution of 1920x1080 is populated in
approximately 4 seconds. With the same graph our
combination algorithm is complete in approximately
30 seconds. Rendering with OpenGL happens in
approximately 3 seconds.

4.2 ARTIFACTS

In the produced output artifacts may appear where
points of similar colors combine into straight
horizontal or vertical lines. We believe this is due to a
bias in the combination algorithm, but it does not
significantly affect the quality of our results.

-.10.
l’!g‘
Figure 5. An example of vertical artifacting

4.3 PARAMETERS

We have four parameters that can influence the look
and quality of our output image. These are the
combination color threshold, the base circle radius
size, the max amount of combinations for each point,
and choice of a white or black background.

Changing the threshold parameter and the max
combinations will determine the amount of points
generated in the point graph. The higher the threshold,
and lower the combination max, the less combinations
that will happen overall in the resulting image, leading
to more circles being rendered.

The need for a combination max arose for images
with large sections of uniform color so that a single
large point would not emerge in the output. The base
circle radius size parameter usually also goes
hand-in-hand with the number of combinations; each
time a point is combined its radius already increases.

To get optimal output, these parameters need to be
tweaked for each individual input image, but they also
allowed for us to produce results that did not match the
pointillist style such as those in Figure 6 and 7. In
general, the pointillistic style is limited the more
homogeneous the colors in the source image are.

Figure 6 & 7. Examples of non-pointillism output

4.4 TECHNICAL CHALLENGES

We originally tried to add new OpenGL code to the
source code we pulled from Homework 3. The
intention was to add circles to the existing mesh
renderer, but we were unsuccessful in incorporating
the existing DrawCircle() function from OpenGL and
the other option of adding circles in the form of extra
mesh faces would have involved unnecessary
math/work, considering the existing DrawCircle()
function. Thus, we made a separate Visual Studio
project with GLFW, which reads the file containing
point graph data output by the renderer to output the
final image. We also ran into issues setting up the
GLFW libraries for the second program.

Our project required creating new .obj files for 2D
images. The OpenGL camera placement was
unintuitive and took a bit of maneuvering to properly
set up.

5. LIMITATIONS AND FUTURE WORK
We completed all of our original main tasks for this
project, but unfortunately did not get to our bonus
tasks of deliberating creating the halo effect seen in
Seurat's painting, and the ability to allow direct input
of 2D images into the pointillistic algorithm instead of
rendering a 3D scene and using ray tracing. Although
in some output, using certain parameters, a halo effect
is somewhat possible, if we were to continue this
project we would want to work on both of these tasks.

Allowing direct 2D input, i.e. a .jpeg or .png
image, would allow us to bypass the need for the
Homework 3 code and place all of our project into a
singular program. The process of switching between
two programs to go from input image to output render
is pretty streamlined, but it does become a limitation
when trying to automate the process.

An additional limitation we have is the
previously mentioned artifacting that may happen on
input with large sections of homogenous color. With

some tweaking the artifacting is barely noticeable in
our image output below, but is still undesirable.

6. CONCLUSION

In this paper, we described a method for a
non-photorealistic rendering of an input 3D scene such
that the final output is rendered in a pointillistic style.
We also achieved output that did not directly reflect
pointillism, but created an artistic visualization of the
input image. We have presented output images that
have been filtered by our algorithm to evoke the
pointillistic style popularized by Georges Seurat.

7. PROJECT ROLES

Keegan Dant created the combination algorithm used.
Also debugged OpenGL and GLFW issues,
implemented the process for writing the point graph to
file and reading from the file to render circles in a
separate program. Rendered all of the images.

Kelly Wang researched for Seurat’s pointillism
technique, created the graph data structure, set up new
scene .obj files, wrote the post-processing function that
applied the position jitter and chromoluminarism
effect, and assisted in the debugging of the
combination algorithm.

In total we spent ~35 hours on the total project, 20 of
those for coding and 15 for the paper, presentation, and
proposal.

8. REFERENCES

1. Seo, SangHyun, and KyungHyun Yoon. "Color juxtaposition
for pointillism based on an artistic color model and a
statistical analysis." The Visual Computer 26 (2010):
421-431.

2. Sugita, Junichi, and Tokiichiro Takahashi. "A method for
generating pointillism based on seurat's color theory." ITE
Transactions on Media Technology and Applications 1.4
(2013): 317-327.

3. Meier, Barbara J. "Painterly rendering for animation."
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. 1996.

4. “Chromoluminarism and Pointillism — New Techniques from
Georges Seurat.” Spoken Vision, Spoken Vision, 15 Aug.
2014,
https://spokenvision.com/chromoluminarism-pointillism-new-
techniques-georges-seurat/.

5. “RGB to HSL Color Conversion.” RGB to HSL Converter |
Color Conversion, RapidTables,
https://www.rapidtables.com/convert/color/rgb-to-hsl.html.

6. “Crying Cat.” Know Your Meme, Know Your Meme, 20 June
2018, https://knowyourmeme.com/memes/crying-cat.

7. Lnh. “This Is Fine.” Know Your Meme, Know Your Meme,
12 May 2015,
https://knowyourmeme.com/memes/this-is-fine.

8. Payne, Matt. “San Juan Sunrise Panorama.” Matt Payne
Landscape Photography , 2016,
https://www.mattpaynephotography.com/photo/san-juan-mou
ntains-sunrise-panorama/. Accessed 21 Apr. 2023.

9. Mclean, Elspeth. “Mandala Stones Collection #3.” Elspeth
Mclean,
https://www.elspethmclean.com/mandala-stones-portfolio-pag
e-1. Accessed 24 Apr. 2023.

9. IMAGES

Figure 8 & 9. Popular meme Sad Cat was used as an input image,
shown on the left. Right is the output with post processing on and

on a black background. Some of the post processing effects can be
seen closer to the nose.

Flgure 10 & 11. Another popular meme, This Is Fine, was used as
an input image, shown on the top. Bottom is the output with post
processing on and on a white background. The post processing
effect was very apparent here in the yellow parts of the fire and the
back wall.

Figure 12 & 13. A mural created by Elspeth Mclean was used as
an input image, shown on the top. Bottom is the output with no
post processing and on a black background. We wanted to use an
image with a large range of colors throughout, in both small and
large sections. This output does not directly reflect all aspects of
pointillism, but it showcases our technique’s ability to preserve
detail.

SN
--——-—a”-:ﬂbr \:c; Pt e

Figure 14 & 15. A landscape photo of a San Juan sunrise taken by
Matt Payne was used as an input image, shown on the top. Bottom
is the output with post processing on and on a black background.
The composition of the original photo was not kept as much as we
would like, but it did produce a nice abstract piece of the original.
We liked the yellow spread throughout the horizon introduced by
complementary colors.

Figure 16 & 17. The reflective spheres.obj provided for
Homework 3 was used as input for both of these. Both images are
on a white background, and the bottom has post processing turned
on. We liked how the white of the background blended very well
into the shadowed areas of the plane. These both show the
artifacting that is possible, but the position jittering in post
processing helps with this in the second image.

Figure 18. The textured plane reflective sphere.obj provided for
Homework 3 was used as input. Post processing was not turned on
and it was drawn on a white background. The textured plane
portion of the output image created some very interesting patterns
in the image. The blue portions of the image also show artifacting
previously discussed.

Base Combination | Combination
Circle Maximum Threshold
Radius
Sad Cat 3 3 0.5
This is Fine 5 1 0.25
Elspeth
Mclean 2 2 0.4
Mural
Matt Payne 3 3 0.05
Landscape
Reflective 3 3 0.5
Spheres
Textured
Reflective 3 3 0.5
Sphere

Table 1. Parameter details for the above image results.

10. BLOOPER IMAGES

Figure 19. An example of blooper output when trying to find
optimal parameters. This kept the composition of the image, but
also introduced small black dots throughout, very similar to a
pixelated effect.

Figure 20. A blooper from before a max combination was
implemented for each point. Very large circles were produced here
where large areas of homogeneous color were present, namely the
sky was turned into a single blue dot at the top.

