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Figure 1: Three views of a pair of portals facing opposite directions, one with mass and one without, along with two
reflective spheres which are in front of the massive portal. On the left is the view of the non-massive portal, in the
middle is the view of the massive portal, and on the right is the bird's-eye view of both portals. The visible light
effects are that of light being sucked into the non-massive portal, light orbiting the massive portal, and light from the
backside of the non-massive portal taking the shortest route to the front side. These took 2 hours to render altogether.

1. Abstract

In this paper, we implement gravitational
lensing and portals, and we investigate how the
two can affect one another. As each of these
effects deals with spacetime, we have combined
them into a single simulation using a modified
ray-tracing system. If we assume that spacetime
remains continuous through a portal, then it stands
to reason that the curvature of spacetime on one
side of a portal can be affected by a large amount
of mass on the other side of the portal. Thus, we
can expect a black hole on one side of a portal to
affect and bend the light on the other side of the
portal. Our work achieves this effect through a
one-sided distance minimization method.

2. Introduction

Gravitational lensing is an effect that is
formed when light passes by a large amount of
mass, causing it to bend as it follows the curvature
of spacetime. On the other hand, portals are an
effect that act as a “bridge” between two points in

space. These are essentially wormholes, in which
the curvature of spacetime links two points and
allows for direct travel between them. The former
is a known phenomenon in space, whereas the
latter is a hypothetical structure that has not been
observed in reality. In this paper, we present the
following contributions: a calculation of ray-based
gravitational lensing in three-dimensional space,
the transformation of rays through the use of
portals or wormholes, and the integration of the
two using distance minimizing formulas.

3. Related Work

Although we struggled to find related work
that investigated the goal we have attempted to
achieve, given that our problem combines two
different phenomena, we did find work done on
the individual problems being approached.
Subileau, Vanderhaeghe, and Paulin approach the
portal problem by solving the question of how
light, as a ray, might travel through a portal from
its input to its output plane!"’. They developed their



algorithm in hopes of creating a simpler way for
artists to add lighting effects to a scene without the
need to perfectly align them to the desired
location, using portals to transport the effects
instead. Their diagrams and methods to calculate
light ray transport alteration were referenced in the
creation of portals for this paper.

Additionally, Thomas Rinsma developed a
recursive portal algorithm using the OpenGL
stencil buffer’?. His method took inspiration from
the video game Portal, which we also hoped to
mimic. Though we did not use the stencil buffer
for our own approach, his approach to portals as a
reflection problem was the inspiration for our own
approach, just through using ray-tracing rather
than OpenGL's stencil.

Much work has been done with regards to
approximating gravitational lensing. Killedar et al.
developed code to perform a ray-traced simulation
of gravitational lensing without utilizing the
multiple-lens approximation used in previous
works?!. Instead, they attempt a direct numerical
integration of the null geodesic equations, and they
compare it with results that use the multiple-lens
approach. Their method is computationally heavy
due to its use of fast Fourier transforms when
calculating the gravitational potentials at each
point in space. While they attempt a more
physically-accurate simulation of gravitational
lensing, our method will avoid directly solving the
null geodesics by approximating them instead.

Finally, we look at a previous gravitational
lensing project done by Mack Qian that closely
follows the method we have attempted®. Qian’s
method approximated black hole renderings by
tracing the path of photons as they are affected by
Newtonian gravitational forces. Qian also
simulated the image distortion of the accretion
disk that can form around a black hole. While our
method does not render an accretion disk, it will
also approximate the null geodesic equations by
treating photons as a low-mass particle that can be
affected by Newton’s law of universal gravitation.

4. Portals

In this paper, the term "portal" refers to a
wormhole-like pair of one-sided planes that are
connected to each other through space. Portals

behave visually as if they are each other's
backsides, transporting light directly from one
finite plane to its pair, and continuing as the light
normally would. This behavior can be seen in
Figure 2.

Figure 2: A top-down view of portal behavior. The
right plane is transformed from the left plane's back
side, retaining position and ray information through the
transformation.

Figure 3: A side view of a ray passing through a finite
plane as if its front and back sides were separate faces.
This is how rays pass through a portal, with the faces
being spatially separated from each other as well.

In this approach, the method has been
implemented on top of an existing implementation
of a ray-tracer, including ray-face intersections.
Portals are treated as a special type of one-sided
face, which has a connected "Pair" face. The pair
connection is determined through the input .obj
file, which takes in an integer as a pair value when
creating a portal face. By storing meshes in this
format, portals can be arbitrarily paired to one
another while also allowing for more than one pair
of portals to be rendered in a scene. By using the
existing intersection method, which determines
whether a ray has intersected with a plane, and
then whether the point of intersection is within the



face's area, the intersection point can be stored for
use in calculation.

The  existing implementation  renders
reflections with a maximum depth value, so the
cast ray reflects off of surfaces for a given limited
number of recursions. In our approach, ray-portal
interaction behaves in the same way, with one
ray-portal intersection acting as a transformed
ray-reflection intersection: rather than reflecting
off the same point, the ray "reflects" off the
location it would be on the paired portal face,
retaining its direction according to the normal of
the paired face. This is done by retrieving the local
translation of the point with respect to the
intersected plane's centroid, multiplying that
translation by the rotation matrix corresponding to
the transformation from the intersected plane to its
pair, and then adding the resulting vector to the
paired plane's centroid, as seen in Figure 4.
Similarly, the direction of the incoming ray is also
multiplied by the corresponding rotation matrix to
get the direction that the outgoing ray should come
out of the paired portal in order to keep continuity.
On its own, this calculation is insufficient. A
directional ray only calculated by the rotation
matrix may return the incorrect angle when
rotating between portals at a 180 degree angle
across the y-axis, for example, due to the x or z
location coordinates being reflected, but not the x
or z direction coordinates, which would cause the
portal to act instead like a mirror. Due to this case,
before computing the rotated direction vector, the
vector is first reflected across the intersecting
plane's normal vector to get the direction that the
rotation matrix should be applied to. The rotation
matrix is calculated outside of the program from
the angle of rotation that would be required for the
faces to be back-to-back if they were at the same
center coordinate.

With these calculations, our program is able to
continuously trace a ray through a portal, retaining
the position and direction across the pair of
portals. This behaves correctly in both directions,
meaning that portals in this implementation are
two-directional rather than one-directional, and
can continue recursively between portals that face
each other (Figure 5). To stop these instances from
creating an infinite loop, the "reflection" algorithm
recurses depending upon a maximum depth value,
determining the number of times a single ray can

be moved and retraced. In order to differentiate
between the two "sides" of the portals, one side is
assigned a blue-colored material, and the other is
assigned an orange-colored material, in order to
help visualize which portal is receiving which hits
when looking at recursively bouncing images.

Vec3f translate =
signed_difference(intersection,
portall_centroid);

translate =
MatrixMultiply(rotation_matrix,
translate);

Vec3f transformed_pos =
portal2_centroid + translate;

Vec3f ray_dir = incom_ray_dir -
(2.8 *
(incom_ray_dir .
portall_normal);

portall_normal) *

ray_dir =
MatrixMultiply(rotation_matrix,
ray_dir);

Figure 4: Pseudocode example of math required to
transform a position vector (intersection) from the
intersected  portal (its centroid denoted by
portall_centroid) to its paired portal (its centroid
denoted by portal2_centroid) according to the
pair's inputted rotation matrix. Rotates incoming ray's
direction (incom_ray_dir) across the reflection, then
by the rotation matrix.

Figure 5: A pair of portals facing each other with two
reflective spheres in between them and a second pair of
portals in the scene to the right. The camera is facing
the blue side of the recursive portals, and the orange
side can be seen reflected in the larger sphere.



5. Gravitational Lensing

Our implementation begins by recognizing
that black holes are not the sole reason for
gravitational lensing: rather, it is a consequence of
having a large amount of mass near a point in
space. Thus, we extend a primitive class to include
information regarding the mass (in kilograms) and
the center of mass of a primitive object. This
allows us to use arbitrary shapes, such as cubes,
cones, and rings, although we focus mainly on
spheres for the purposes of this work. Primitives
also keep track of two special variables, which
indicate the object’s radius of influence and its
Schwarzschild radius.

The radius of influence, also known as the
sphere of influence, is an idea used in prior works
to limited success. We built upon this idea by
choosing the size of the influence radius
dynamically, such that the radius equals the
distance at which the force exerted on a photon of
light becomes equal to a certain Newtonian force
value. For our simulations, we chose within the
range from 0.001N to 1.0N for the minimum force
value. Setting a lower value allows for more
accurate renderings, while higher values tend to be
faster to generate. Although Qian chose to not use
this technique due to its inaccuracy, we kept it
for the other benefits it provides: such as the early
termination of rays that exit the radius of influence
and are sent into empty space. We calculate the
radius of influence as shown, where G is the
gravitational constant, M is the mass, and f'is the
minimum force that must be applied to a photon
before we should consider accelerating the photon:

G — GM
r = 7

The Schwarzschild radius is an incredibly vital
piece of our implementation. When a photon of
light is within this distance of an object, we
terminate the operation and consider the photon
“absorbed”. Like the radius of influence, this
provides an early termination for a subset of rays
in the scene. It is important to note that the
Schwarzschild radius and the size of an object are
independent of each other. In our implementation,
a sphere could end up having a radius greater than
its Schwarzschild radius. In this situation, while
the simulated photon will be attracted to the center

of mass, it will not be absorbed, and thus a black
hole will not be rendered. This allows us to
simulate gravitational lensing around arbitrary
objects (such as galaxy clusters) rather than being
limited to black holes. We calculate the
Schwarzschild radius as follows, where G is the
gravitational constant, M is the mass, and c is the
speed of light:

2GM

c2

ST =

As these radii make use of the gravitational
constant and the speed of light, it is worth noting
that we used unrealistic values in our simulation.
Instead of using 6.6743 x 10" m’kg's? and
299,792,458 m/s respectively, we use 1.0 m’kg's™
and 45.0 m/s. As the ratio of the speed of light to
the gravitational constant is approximately 4.5 x
10", we chose these specific values to make the
difference in scale between our values and the real
values roughly 10'® on the assumption that this
would help to provide more-realistic results.

Figure 6: A photon’s path as it circles around a dense
object, eventually terminating upon hitting a surface
after a single bounce. Notice that the path is made up of
alternating green and gray segments.

At a high level, our implementation works by
splitting rays of light into smaller segments, and
by treating each ray of light as a single photon
traveling through space (as shown in Figure 6). We



calculate the acceleration on each photon due to
masses using Newton’s law of universal
gravitation, while assuming that each photon has a
mass of 1 kilogram. This is unrealistic as a photon
is considered a massless particle, but for the sake
of our implementation, this allows us to use
Newtonian physics as a good approximation. This
is preferable to solving the null geodesic equations
as done in [3]. When photons are influenced, the
calculated acceleration is “fixed” before being
applied to the photon’s velocity. We implement the
step detailed by Orban®. As Orban explains,
because a photon moves at the speed of light, its
velocity vector must be constrained to a circle
around it with a radius equal to the speed of light.
However, our acceleration vector may have a
component parallel to the direction of the velocity
vector. This would unnecessarily cause the photon
to speed up or slow down. To help mitigate this
issue, we project the acceleration vector onto the
velocity vector, determine its parallel component,
and use that to find the vector component of
acceleration that is perpendicular to the velocity.
At each timestep, we update the velocity using
only this perpendicular component. While this
does result in the velocity becoming “faster than
light”, the error is smaller and easily mitigated by
normalizing the resulting velocity and then
rescaling it to be equal to the speed of light.

We have experimented with using both Euler’s
method and Runge Kutta (RK4) for improving the
accuracy of our resulting images. We found that
while RK4 tended to create smoother arcs as the
light rays bent in space, it also took significantly
longer to render. While Euler’s method requires
one check of the gravitational influence at a point
in space, RK4 requires four separate checks. This
is very slow, and the generated images seemed to
indicate very little improvement in overall quality.
As a result, we made the choice to stick with Euler
as the default option for our implementation.

After a photon’s position and velocity have
been updated, we check to see if it has fallen
within the Schwarzschild radii of any objects in
the scene. If so, we terminate the ray immediately
and render a black pixel. If it was not terminated,
we continue to trace the ray until we fall into a
black hole, intersect with an object, or run out of
iterations. The final method CastGravitationRay is
a near-replacement for our original CastRay

method, with the simple addition of a few more
arguments and the consideration of a “photon
termination” return value.

6. Gravitationally-Linked Portals

The final (and perhaps most interesting) piece
of our work is our attempt to combine portals with
gravitational lensing. Because our methods each
rely on raytracing, this appears to be an easy
problem to solve. In our method, when we
calculate the net gravitational acceleration at a
point in space due to masses in the scene, we also
iterate over every portal in the scene. At each
portal, we “enter” at the point on its face closest to
the point in space, and then do the same
acceleration calculations at the other side of the
portal. This continues recursively for a specified
depth. What makes our method interesting is that
we always look for the closest point on the front
face of the portal. This means that if a point is
behind the portal, it will attempt to wrap around by
finding the closest point on one of the edges of the
portal instead. Our expected result was to see the
light around the back edges of a portal appear to
“squish” as the light attempted this bending
process. As shown in Figure 7, our first rendering
that combined portals with gravitational lensing,
we were relatively successful.

Figure 7: Pictured are a dense object and orange portal
(left) and a blue portal (right). Gravitational lensing is
seen around the mass, while gravitational forces appear
to bend light above the blue portal around it towards the
front face.



Figure 8: A closer image of the blue portal shown in
Figure 7, shown from a bird’s-eye view. On the front
face of the portal, the light can be seen bending
according to the mass on the other side of the orange
portal, and on the back face of the portal, the light can
be seen attempting to take the shortest path to the front
face as it gets pulled in.

In order to get the closest point on the front of
the paired portal for each point around it, we
implemented David Eberly's "Distance Between
Point and Triangle in 3D" algorithm in the
function GetClosestPoint®. The face of the portal
is split into two triangles and, using the closest of
the two triangles, Eberly's algorithm is applied.
First, we set the triangle onto an st-plane with 7
different sections so that the minimization
equation can be applied to the corresponding
section correctly. These sections are the triangle
itself, for which the closest point is the point from
a straight line to the triangle; the 3 edges, for
which the closest point is the point from a straight
line to its closest edge; and the 3 vertices, for
which the closest point is the vertex of the triangle
itself. Once the section containing the requesting
point is found, the algorithm minimizes the s and t
values according to this section, multiples these
values by edges 1 and 2 of the triangle, and then
adds these results to the vertex connecting these
two edges of the triangle to get the closest point.
The resulting paths of least distance that the points
take to get to the portal from this algorithm can be
seen in Figures 9 and 10, in which the green lines
denote the shortest path.

Figure 9: Points taking the shortest path to reach the
front face of a portal.

Figure 10: Points on the back side of the portal taking
the shortest path to the edge of the front face, rather
than the shortest path to the back face.

7. Results

Figure 7 took 579 seconds to render, which
was significantly longer than the same scene when
rendered with portals and gravitational lensing
separately. We suspect that the main bottleneck of
our implementation was the use of matrix
multiplication in ray-portal transformation. At
each timestep, a photon must determine its
gravitational acceleration in space. This requires
finding the closest points on every portal and using
matrix  multiplication = to  determine the
corresponding point before repeating the
gravitational force calculations. Other renderings
include those shown in Figure 1 and Figure 18.



8. Future Work

We came up with a few more methods for
determining the gravitational force through portals
that could yield results better than our own.

First, the portals themselves could be given an
interpolated mass value based on the masses of all
nearby sources of mass. Then, when determining
the net gravitational force, one could simply
include the masses of the portals themselves into
computation. This method would likely be the
fastest (requiring a single precomputation, and
recomputation in the event of scene changes), but
it would also be a gross approximation. Due to the
nature of the gravitational forces, we would expect
the magnitudes of the forces to be radially-related
and their directions to be based on the directions of
the associated objects. However, applying a mass
value to the portal would remove directional
information and result in inaccuracies in the force
magnitudes at certain positions on the portal face.

Our second method seems much more
feasible. We propose a photon-mapping-like
solution that we have nicknamed “graviton
mapping”. Gravitons are a hypothetical quantum
particle that carries the gravitational field. Rather
than applying a single interpolated mass value to
each portal face, one could scatter a uniform array
of gravitons to the face of each portal at the start of
simulation. Then, for each graviton, we could
determine and store the gravitational force that
would affect a particle at that point in space. This
can be precomputed, and recomputed in the event
of substantial sources of masses being moved,
created, and destroyed within the scene. As the
simulation runs, we would find the closest point
on the face of a portal as normal. However, instead
of entering the portal, we would find the 4 closest
gravitons and bilinearly interpolate their forces.
This would give us an approximate gravitational
force at our specific position. Increasing the
number of gravitons on each portal face would
linearly increase the precomputation step, but
result in more-accurate force computations.

Alongside these improvements, there are a
number of bugs that we would like to look into in
the future. As shown in Figure 14, we encountered
an issue where light would enter a circular orbit
around a dense object. This is a realistic
phenomenon that takes place on the photon sphere,

at a distance of 1.5 times the Schwarzschild radius.
Although realistic, this takes up processing time as
the ray runs through all allocated iterations. A new
method to terminate these rays early, or to prevent
photons from getting trapped in this radius would
be ideal for further work.

9. Conclusion

We have presented methods for rendering
portals and gravitational lensing. Due to the
expense of our ray-tracing implementation, our
approach is only feasible for generating static
images. We also found success in integrating these
effects together to create a variety of interesting
scenes. While such renderings may not be useful
in realistic simulation (as portals are hypothetical),
our techniques may find a use in popular media.
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Figure 11: A ray traced from the top left corner of the image being attracted to a mass, entering the blue portal,
coming out of the orange portal, bouncing off the floor, and being bent again around the mass.
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Figure 12: Several renderings of a black hole with different viewing angles and parameters. In the left image, the
black hole has a relatively weak force and is close to the ground plane, causing a clean gravitational lensing effect.
In the middle image, a black hole is being viewed from the side with the ground plane below it. As rays travel over
the top of the black hole, some are pulled down to hit the ground plane, creating a visual texture “flip” effect. In the
right image, the black hole is viewed from top-down with the textured plane directly below it. Because the black
hole is far enough from the plane, rays that are nearby bend completely around the black hole and return in the
direction of the camera.

Figure 13: Several images showing the interaction between multiple dense objects in the scene. In the left image,
two equally-dense black holes cause a symmetrical distortion in the texture. In the middle image, two
unequally-dense black holes cause an asymmetrical lensing effect in our “color box” environment. In the right
image, the path of a photon in the color box environment is visualized as it creates the “flip” effect.



Figure 14: Images showing various issues encountered while implementing gravitational lensing. In the left image,
our “sphere of influence” was improperly tuned, causing a “magnification” effect rather than the lensing effect we
hoped for. In the middle image, the combination of a higher timestep and the omission of parallel-acceleration
removal causes a photon to bounce back and forth when near a dense object. In the right image, a photon appears to
enter an orbit around a black hole. This may simulate the real-world phenomenon in which light can enter a circular
orbit at a radius equal to 1.5 times the Schwarzschild radius of a black hole, found at the “photon sphere”.

Figure 15: Images showing how our scene appeared for our first attempt at rendering light being affected by
gravitational forces through the face of a portal due to a dense object.

Figure 16: Image showing how a portal with an incorrectly-calculated ray direction would appear. In this image, the
reflection ray was not yet precalculated in getting the proper portal ray, so the image in the rightmost portal appeared
as a mirror reflection of the spheres rather than as a transformed image.



Figure 17: First attempt at giving a portal mass. Since the portal’s center was not explicitly determined for faces as
it was for spheres, the center of mass was instead positioned at (0,0,0), resulting in the entire image being warped
around the origin.

Figure 18: A single visualized ray traced from the top right corner of the blue face of the portal. The ray can be seen
curving into the blue portal due to the mass of the orange portal. It then begins orbiting around the orange portal's
center when it comes out of the other side, going back into the orange portal and popping out on the blue portal
again. The ray then curves a final time due to the force of the paired face's mass, heading back into the portal and
stopping due to the maximum depth value of 2.



