Image Vectorization, Compression, and Transmission

Brian Wu

Dru Ellering

)

Figure 1. Progressive compression of an image from original to an uncompressed vectorized form, a 90% compressed

vectorized form, and a 99% compressed vectorized form (left to right).

Abstract

While many methods of image compression exist, most
of the techniques performed today focus on shrinking the
size of the image for storage, not for image transfer,
which causes problems when attempting to send a
detailed image. We introduce a method for vectorizing
existing raster images that contain arbitrary geometry.
These vectorized images can then be dynamically
downscaled while retaining an approximation of the initial

geometry while also significantly reducing the amount of

data needed to be stored.

Because of the vectorized structure behind these images,
any compressed version of them can be sent and then
restored to the original image by applying a sequence of
inverse transformations. Each transform can be sent in an
optimized order as an individual packet, restoring
important parts of the image first. The exact ordering of
reconstruction also does not need to be maintained, and

the receiver is able to determine if an inverse transform is

valid at the current image state. This allows for the
transforms to simply be buffered until they are able to be

restored.

1 Introduction

With the advent of the internet, the transmission of
images and other visual media has become commonplace.
Even newly created forms of media, such as image
macros, have become an integral part of communication
in the modern age. As such, research into the various
ways to store an image more efficiently (a process known
as image compression) has long been explored. However,
these methods are often used for image transmission as
well as a general purpose tool. This leaves an interesting
niche, focusing on bettering image transmission rather

than general image compression.

This concept has been explored in other domains such as
in the rendering of three-dimensional scenes. For objects
far away from the camera, low-poly versions of the model

are loaded to save on memory.

While there are a great many types of images, some of the
most important ones contain structute to them in order
to display meaningful visual information to the viewer.
For this reason, the images that we will focus on in this
paper are those with patterns instead of those with

random noise.

2 Prior Work

The basis of this work is rooted in the principles of mesh
subdivision, specifically a variant of the Catmull-Clark
subdivision surfaces algorithm introduced by DeRose et
al. in 1998. Catmull-Clark subdivision is a method of
subdividing existing geometry into triangles, making for a
rather versatile algorithm. Their improved method
introduced a method for maintaining sharp edges and
creases when subdividing. The underlying mesh
representation is a grid-like arrangement of quads, which
makes it compact. Taking the limit of the subdivision to

infinity results in a smooth surface, which is useful for

maintaining quality.

When it comes to reversing any basic subdivision, Hoppe
shows a method of progressively representing a complex
mesh as a series of edge collapses. This method allows for
the simplification of complex meshes to save on space,
but also allows for the continuous transmission of the
mesh at various levels of quality. Edge collapses atre
invertible, which allow for the compression of a dense

mesh into a simpler mesh; the dense mesh can be

retrieved losslessly. Another aspect of progtressive meshes
is selective refinement; areas of high detail can be selected

for refinement, which is useful for saving resources.

The progressive mesh representation has certain advantages
over traditional image compression algorithms. Structured
images can be represented by a mesh with very little
storage space. Additionally, meshes are vectorized and can
be infinitely scaled. An image in progressive mesh
representation can be progressively transmitted such that
higher-level details are introduced on top, instead of in
raster order; this key feature allows the image to be shown
as the data is being downloaded, instead of all at once

after all the data has been downloaded.

Previous work in image vectorization has also been done.
Sun et al. described a method of transforming raster
images into vector images while encoding smooth
transitions as seen in real life. The mesh utilizes bezier
curves and color differentials to ensure the vectorized
image appears as realistic as possible. In order to
represent sharp lines and boundaries, two slim patches on
cither side of the line are used. Hoppe goes on to
demonstrate that representing the image as an optimized
mesh is better at preserving the original image when

upscaled.

3 Vectorization

The first step in our algorithm is to convert a raster image

into a vector image. Vertex position and color are

represented with an array of three binary32 IEEE
754-2008 floating point numbers. A vertex anchor
attribute determines whether a vertex is anchoted to the
edge of the image; this consideration helps prevent edge
collapses from altering the frame of the image. Additional
member attributes store information for facilitating the

algorithm.

We will now introduce several algorithms for converting
the raster image into the vector mesh. A visual

comparison of these methods can be seen in Figure 2.

The first method creates a one-to-one mapping by
creating a vertex for each pixel in the original image.
Vertices adjacent in the x and y axes are connected with
an edge and the diagonal of each quad in the mesh is split
such that all the diagonals are parallel. This formulation is
relatively simple and is relatively smaller when compared
to the other methods. One of the major drawbacks,
however, is that the original image is not preserved and
especially on low resolution images, the colors of adjacent
vertices bleed into each other; this is because triangles
connect the adjacent vertices and the color between them

is linearly interpolated.

The second method is exactly the same as the first except
that the diagonals alternate directions in a checkerboard
manner. This reduces some of the bias from the diagonal

directions but still does preserve the image

Finally, the third method creates four vertices for each
pixel. This allows each pixel to be represented as two
triangles, while linking triangles, in between each pixel,
keep the mesh manifold. The advantage of this method is
that the shape and boundaries of the original image is
preserved but comes at the cost of significantly more

triangles to render and vertices to store.

Figure 2. Connectivity of the initial vector image mesh,
where the white lines represent triangle edges. The left
image shows method one with parallel diagonals, the
middle image shows alternating diagonals, and the right
image shows a true representation of the image with four
vertices per pixel.

Figure 3. The third method with wide offsets for the
edges. The edges between pixels are represented by two
slim triangles, which allows for sharp borders between
colors.

4 Collapsing Edges

After the image has been vectorized, a basic edge collapse
algorithm begins. In order to aid the edge collapse
algorithm, a half-edge data structure was created in Rust.
The mesh itself stored a vector the the vertices, edges,
and triangles. To ensure that the mesh remained manifold,
even with highly irregular collapses as might occur in
certain images, the mesh was queried for overlapping

triangles after each collapse.

In order to determine which edge to collapse, all edges
are ranked based on their energy, which is calculated as a
function of the length of the edge and the distance
between the colors at each of the edge’s vertices. The
edge with the minimum energy is the best edge to
collapse, but only after checking if the edge collapse is

valid

Figure 4. Progressive collapse of a mesh’s edges. Going
from left to right and top to bottom we have the initial
vectorized mesh, the same mesh at 25% compression,
50% compression, and 90% compression.

When an edge is collapsed in the mesh, attributes such as

position and color are simply averaged between the two

incident vertices. The resulting vertex takes on these
values, while the anchor attribute is inhetrited from the

most strict parent vertex.
4 Splitting Vertices

In order to undo an edge collapse, an inverse operation

called a vertex split must be performed. Taking
inspiration from Hoppe’s work, any time we do an edge
collapse, we store the index of the v, v,, and v,, vertices
shown in Figure 5 along with the two deltas required to
move v; to its original positions before the edge collapse.
Using smarter encoding, as Hoppe has shown, this
information can be reduced, but a more straightforward
taken here to

and understandable approach was

demonstrate the concept.

ecol
A
v v
1 V. 1 V.
A S
vsplit

Figure 5. Visualization of a basic edge collapse operation
and its inverse, a vertex split (Hoppe, 1996).

To know when a vertex can be split, we simply need to
check if v, v, and v, exist in the current mesh. Since the
indices of the vertices have been saved, this check is a
simple O(1) lookup. It is worth noting that when the

initial simplified mesh is sent, the number of vertices also

needs to be sent along with vertex position information

to preserve this property.

Finally, in order to implement selective refinement of the
mesh, we need a quick way to gather all valid vertices to
split near a given point. For this, we add yet another kd
tree into the mesh structure. Anytime we add an entry to
the history, we also append the position of v, along with
its index in the history list to the tree. When looking for a
vertex to send, we can then quickly find the nearest vertex
to the point of interest, then send that vertex split if it is

valid for the receiving mesh.

5 Optimizations

This algorithm is expensive due to a number of factors.
The initial creation of the mesh is essentially linearly
upscaling the image to create the triangles. As such,
millions of vertices need to be rendered for a high
definition image. In addition, ensuring the mesh remains
manifold through atbitrary collapses requires accessing
the triangles, of which a naive implementation would
requite O(n) access time. In addition, uncollapsing the
edges in a traditional half edge mesh would also require a
naive search through all edges, once again requiring O(n)

access time.

Because of these factors, the reduction of vertices that
our first two vectorization methods obtain highly impacts
the performance. For this reason, all images generated in

this paper used the first method unless otherwise stated.

To further optimize the algorithm, a kd-tree containing
each triangle’s index and centroid was stored in the mesh.
With this, we could gather each altered triangle in an edge
collapse and find a radius encompassing all possible
triangles that those triangles also affected, even if they
were not directly connected. This reduces the need to
check for overlap in every triangle in the mesh to only
those possibly affected. In our testing, this change alone
reduced the time needed to make a significant amount of

collapses drop from hours to minutes.

The other optimization was once again to modify the
traditional half edge structure such that each vertex was
able to instantly access one of its corresponding edges.
We could then simply search the neighborhood around
that vertex for the proper edge, rather than manually
sorting through each possible edge when splitting a

vertex.

Lastly, the render pipeline was optimized to reduce
duplication of data. Along with a buffer of vertices, an
index buffer is passed along to the pipeline. The index
buffer contained the index of the associated vertex in the
vertex buffer. Now, a sequence of three indices can be

passed to the renderer to define a triangle in the mesh.

6 Results

The initial results of this method are extremely promising,
with a 90% reduction of edges producing vectorized

images that are sometimes difficult to tell apart from the

initial rasterized image as shown in Figure 5. In other
examples, the vectorized image looks better than the
input raster image, especially in cases where the raster
image was initially rather noisy and aliased. This effect is
largely due to the imperfect method of vectorization
chosen. By not respecting the initial image’s edges, we
instead interpolate between those edges, making soft
edges look much more natural, like in the case of Figure

4.

Figure 6. An example of a 120x60 map compressed by
90%. The top image is the input image, the middle
displays a visualization of the compressed mesh and the
bottom is the resulting compressed output.

However, this does have its drawbacks. For small,
purposefully pixelated images, such as in Figure 2, the
soft edges look extremely out of place. In fact, any time
there is a hard edge, the simplification of the edge

produces very noticeable triangular artifacts as seen in

Figure 7. While this is acceptable in noisy images, the

triangular artifacts in some images may not be preferable.

Figure 7. The progressive collapse of a mesh’s edges
along a circular curve. Going from left to right we have
the initial vectorized image, the same image at 90%
compression, and a visualization of the mesh at 90%
compression.

Allowing support for atbitrary polygons may help
minimize such artifacts by providing a more controllable
edge to fit the shape, however, no matter what shape is
used, there will be a lineatization of the simplified images.
Instead of polygons then, perhaps looking into the work
of Sun et al. to incorporate bezier curves into the mesh

would serve to reduce the effects of linear artifacts.

The last major issue is with the alterations of the
colorspace from the input images. While the RGB values
are respected, there is a significant desaturation effect on
some file formats. This is likely due to an unfaithful
transformation from the image colorspace to our
colorspace, and while this issue is beyond the scope of

our work, should be simple to fix.

7 Conclusion

In this paper we have shown a method for converting

raster images into vectorized meshes and then

transforming the mesh with a series of edge collapses to
create a compressed representation. We can then recover
the original image through a sequence of vertex splits.
One application of this technique is the loading of images.
The compressed base mesh is quickly loaded first due to
its small size. The sequence of vertex splits is then loaded
and performed on the mesh until the final mesh is
recovered. Loading images in this way can help prevent

popping artifacts when images load all at once.

8 Future Work

The runtime of this algorithm can be improved with
various optimization techniques. More vertex attributes
can be explored such as keeping track of color derivatives

to maintain a smoother image.

Another approach to this problem could utilize quad
meshes or Ferguson Patches like in Sun et al. Quads could
potentially lend itself to vectorization especially since they

correspond better with the pixels in the rasterized image.

9 Acknowledgements

We would like to thank both Dru Ellering and Brian Wu
for their hard work on this project. Specifically, we would
like to thank Mr. Ellering for implementing a half edge
data structure in Rust along with the basic vectorization,
edge collapse, and vertex splitting algorithms along with
general optimizations; and Mr. Wu for implementing the

rendering pipeline in Rust, shaders, the edge collapse

energy function, vertex anchors, additional mesh
initialization methods, and the various other extensions to

basic edge collapse.

References

DeRosg, T., MicHAEL, K., AND TiEN, T. 1998. Subdivision
surfaces in character animation. In Proc. of the 25th
annual - conference on computer graphics and interactive

technigues, 85-94.

Hoppg, H. 1996. Progressive meshes. In Proceedings of the
23rd annual conference on Computer graphics and interactive

technigques, 99-108.

Sun,], LN L, Fane W., aAND HEUNG-YEUNG S.. 2007. Image
vectorization using optimized gradient meshes. In

ACM Transactions on Graphics (TOG) 26, no. 3, 11-es.

https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://hhoppe.com/pm.pdf
https://hhoppe.com/pm.pdf
https://hhoppe.com/pm.pdf
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391

