
Image Vectorization, Compression, and Transmission

Brian Wu Dru Ellering

Figure 1. Progressive compression of an image from original to an uncompressed vectorized form, a 90% compressed

vectorized form, and a 99% compressed vectorized form (left to right).

Abstract

While many methods of image compression exist, most

of the techniques performed today focus on shrinking the

size of the image for storage, not for image transfer,

which causes problems when attempting to send a

detailed image. We introduce a method for vectorizing

existing raster images that contain arbitrary geometry.

These vectorized images can then be dynamically

downscaled while retaining an approximation of the initial

geometry while also significantly reducing the amount of

data needed to be stored.

Because of the vectorized structure behind these images,

any compressed version of them can be sent and then

restored to the original image by applying a sequence of

inverse transformations. Each transform can be sent in an

optimized order as an individual packet, restoring

important parts of the image first. The exact ordering of

reconstruction also does not need to be maintained, and

the receiver is able to determine if an inverse transform is

valid at the current image state. This allows for the

transforms to simply be buffered until they are able to be

restored.

1 Introduction

With the advent of the internet, the transmission of

images and other visual media has become commonplace.

Even newly created forms of media, such as image

macros, have become an integral part of communication

in the modern age. As such, research into the various

ways to store an image more efficiently (a process known

as image compression) has long been explored. However,

these methods are often used for image transmission as

well as a general purpose tool. This leaves an interesting

niche, focusing on bettering image transmission rather

than general image compression.

This concept has been explored in other domains such as

in the rendering of three-dimensional scenes. For objects

far away from the camera, low-poly versions of the model

are loaded to save on memory.

1



While there are a great many types of images, some of the

most important ones contain structure to them in order

to display meaningful visual information to the viewer.

For this reason, the images that we will focus on in this

paper are those with patterns instead of those with

random noise.

2 Prior Work

The basis of this work is rooted in the principles of mesh

subdivision, specifically a variant of the Catmull-Clark

subdivision surfaces algorithm introduced by DeRose et

al. in 1998. Catmull-Clark subdivision is a method of

subdividing existing geometry into triangles, making for a

rather versatile algorithm. Their improved method

introduced a method for maintaining sharp edges and

creases when subdividing. The underlying mesh

representation is a grid-like arrangement of quads, which

makes it compact. Taking the limit of the subdivision to

infinity results in a smooth surface, which is useful for

maintaining quality.

When it comes to reversing any basic subdivision, Hoppe

shows a method of progressively representing a complex

mesh as a series of edge collapses. This method allows for

the simplification of complex meshes to save on space,

but also allows for the continuous transmission of the

mesh at various levels of quality. Edge collapses are

invertible, which allow for the compression of a dense

mesh into a simpler mesh; the dense mesh can be

retrieved losslessly. Another aspect of progressive meshes

is selective refinement; areas of high detail can be selected

for refinement, which is useful for saving resources.

The progressive mesh representation has certain advantages

over traditional image compression algorithms. Structured

images can be represented by a mesh with very little

storage space. Additionally, meshes are vectorized and can

be infinitely scaled. An image in progressive mesh

representation can be progressively transmitted such that

higher-level details are introduced on top, instead of in

raster order; this key feature allows the image to be shown

as the data is being downloaded, instead of all at once

after all the data has been downloaded.

Previous work in image vectorization has also been done.

Sun et al. described a method of transforming raster

images into vector images while encoding smooth

transitions as seen in real life. The mesh utilizes bezier

curves and color differentials to ensure the vectorized

image appears as realistic as possible. In order to

represent sharp lines and boundaries, two slim patches on

either side of the line are used. Hoppe goes on to

demonstrate that representing the image as an optimized

mesh is better at preserving the original image when

upscaled.

3 Vectorization

The first step in our algorithm is to convert a raster image

into a vector image. Vertex position and color are

2



represented with an array of three binary32 IEEE

754-2008 floating point numbers. A vertex anchor

attribute determines whether a vertex is anchored to the

edge of the image; this consideration helps prevent edge

collapses from altering the frame of the image. Additional

member attributes store information for facilitating the

algorithm.

We will now introduce several algorithms for converting

the raster image into the vector mesh. A visual

comparison of these methods can be seen in Figure 2.

The first method creates a one-to-one mapping by

creating a vertex for each pixel in the original image.

Vertices adjacent in the x and y axes are connected with

an edge and the diagonal of each quad in the mesh is split

such that all the diagonals are parallel. This formulation is

relatively simple and is relatively smaller when compared

to the other methods. One of the major drawbacks,

however, is that the original image is not preserved and

especially on low resolution images, the colors of adjacent

vertices bleed into each other; this is because triangles

connect the adjacent vertices and the color between them

is linearly interpolated.

The second method is exactly the same as the first except

that the diagonals alternate directions in a checkerboard

manner. This reduces some of the bias from the diagonal

directions but still does preserve the image

Finally, the third method creates four vertices for each

pixel. This allows each pixel to be represented as two

triangles, while linking triangles, in between each pixel,

keep the mesh manifold. The advantage of this method is

that the shape and boundaries of the original image is

preserved but comes at the cost of significantly more

triangles to render and vertices to store.

Figure 2. Connectivity of the initial vector image mesh,
where the white lines represent triangle edges. The left
image shows method one with parallel diagonals, the
middle image shows alternating diagonals, and the right
image shows a true representation of the image with four
vertices per pixel.

Figure 3. The third method with wide offsets for the
edges. The edges between pixels are represented by two
slim triangles, which allows for sharp borders between
colors.

3



4 Collapsing Edges

After the image has been vectorized, a basic edge collapse

algorithm begins. In order to aid the edge collapse

algorithm, a half-edge data structure was created in Rust.

The mesh itself stored a vector the the vertices, edges,

and triangles. To ensure that the mesh remained manifold,

even with highly irregular collapses as might occur in

certain images, the mesh was queried for overlapping

triangles after each collapse.

In order to determine which edge to collapse, all edges

are ranked based on their energy, which is calculated as a

function of the length of the edge and the distance

between the colors at each of the edge’s vertices. The

edge with the minimum energy is the best edge to

collapse, but only after checking if the edge collapse is

valid

Figure 4. Progressive collapse of a mesh’s edges. Going
from left to right and top to bottom we have the initial
vectorized mesh, the same mesh at 25% compression,
50% compression, and 90% compression.

When an edge is collapsed in the mesh, attributes such as

position and color are simply averaged between the two

incident vertices. The resulting vertex takes on these

values, while the anchor attribute is inherited from the

most strict parent vertex.

4 Splitting Vertices

In order to undo an edge collapse, an inverse operation

called a vertex split must be performed. Taking

inspiration from Hoppe’s work, any time we do an edge

collapse, we store the index of the vl, vr, and vs, vertices

shown in Figure 5 along with the two deltas required to

move vs to its original positions before the edge collapse.

Using smarter encoding, as Hoppe has shown, this

information can be reduced, but a more straightforward

and understandable approach was taken here to

demonstrate the concept.

Figure 5. Visualization of a basic edge collapse operation
and its inverse, a vertex split (Hoppe, 1996).

To know when a vertex can be split, we simply need to

check if vs, vl, and vr exist in the current mesh. Since the

indices of the vertices have been saved, this check is a

simple O(1) lookup. It is worth noting that when the

initial simplified mesh is sent, the number of vertices also

4



needs to be sent along with vertex position information

to preserve this property.

Finally, in order to implement selective refinement of the

mesh, we need a quick way to gather all valid vertices to

split near a given point. For this, we add yet another kd

tree into the mesh structure. Anytime we add an entry to

the history, we also append the position of vs along with

its index in the history list to the tree. When looking for a

vertex to send, we can then quickly find the nearest vertex

to the point of interest, then send that vertex split if it is

valid for the receiving mesh.

5 Optimizations

This algorithm is expensive due to a number of factors.

The initial creation of the mesh is essentially linearly

upscaling the image to create the triangles. As such,

millions of vertices need to be rendered for a high

definition image. In addition, ensuring the mesh remains

manifold through arbitrary collapses requires accessing

the triangles, of which a naive implementation would

require O(n) access time. In addition, uncollapsing the

edges in a traditional half edge mesh would also require a

naive search through all edges, once again requiring O(n)

access time.

Because of these factors, the reduction of vertices that

our first two vectorization methods obtain highly impacts

the performance. For this reason, all images generated in

this paper used the first method unless otherwise stated.

To further optimize the algorithm, a kd-tree containing

each triangle’s index and centroid was stored in the mesh.

With this, we could gather each altered triangle in an edge

collapse and find a radius encompassing all possible

triangles that those triangles also affected, even if they

were not directly connected. This reduces the need to

check for overlap in every triangle in the mesh to only

those possibly affected. In our testing, this change alone

reduced the time needed to make a significant amount of

collapses drop from hours to minutes.

The other optimization was once again to modify the

traditional half edge structure such that each vertex was

able to instantly access one of its corresponding edges.

We could then simply search the neighborhood around

that vertex for the proper edge, rather than manually

sorting through each possible edge when splitting a

vertex.

Lastly, the render pipeline was optimized to reduce

duplication of data. Along with a buffer of vertices, an

index buffer is passed along to the pipeline. The index

buffer contained the index of the associated vertex in the

vertex buffer. Now, a sequence of three indices can be

passed to the renderer to define a triangle in the mesh.

6 Results

The initial results of this method are extremely promising,

with a 90% reduction of edges producing vectorized

images that are sometimes difficult to tell apart from the

5



initial rasterized image as shown in Figure 5. In other

examples, the vectorized image looks better than the

input raster image, especially in cases where the raster

image was initially rather noisy and aliased. This effect is

largely due to the imperfect method of vectorization

chosen. By not respecting the initial image’s edges, we

instead interpolate between those edges, making soft

edges look much more natural, like in the case of Figure

4.

Figure 6. An example of a 120x60 map compressed by
90%. The top image is the input image, the middle
displays a visualization of the compressed mesh and the
bottom is the resulting compressed output.

However, this does have its drawbacks. For small,

purposefully pixelated images, such as in Figure 2, the

soft edges look extremely out of place. In fact, any time

there is a hard edge, the simplification of the edge

produces very noticeable triangular artifacts as seen in

Figure 7. While this is acceptable in noisy images, the

triangular artifacts in some images may not be preferable.

Figure 7. The progressive collapse of a mesh’s edges
along a circular curve. Going from left to right we have
the initial vectorized image, the same image at 90%
compression, and a visualization of the mesh at 90%
compression.

Allowing support for arbitrary polygons may help

minimize such artifacts by providing a more controllable

edge to fit the shape, however, no matter what shape is

used, there will be a linearization of the simplified images.

Instead of polygons then, perhaps looking into the work

of Sun et al. to incorporate bezier curves into the mesh

would serve to reduce the effects of linear artifacts.

The last major issue is with the alterations of the

colorspace from the input images. While the RGB values

are respected, there is a significant desaturation effect on

some file formats. This is likely due to an unfaithful

transformation from the image colorspace to our

colorspace, and while this issue is beyond the scope of

our work, should be simple to fix.

7 Conclusion

In this paper we have shown a method for converting

raster images into vectorized meshes and then

6



transforming the mesh with a series of edge collapses to

create a compressed representation. We can then recover

the original image through a sequence of vertex splits.

One application of this technique is the loading of images.

The compressed base mesh is quickly loaded first due to

its small size. The sequence of vertex splits is then loaded

and performed on the mesh until the final mesh is

recovered. Loading images in this way can help prevent

popping artifacts when images load all at once.

8 Future Work

The runtime of this algorithm can be improved with

various optimization techniques. More vertex attributes

can be explored such as keeping track of color derivatives

to maintain a smoother image.

Another approach to this problem could utilize quad

meshes or Ferguson Patches like in Sun et al. Quads could

potentially lend itself to vectorization especially since they

correspond better with the pixels in the rasterized image.

9 Acknowledgements

We would like to thank both Dru Ellering and Brian Wu

for their hard work on this project. Specifically, we would

like to thank Mr. Ellering for implementing a half edge

data structure in Rust along with the basic vectorization,

edge collapse, and vertex splitting algorithms along with

general optimizations; and Mr. Wu for implementing the

rendering pipeline in Rust, shaders, the edge collapse

energy function, vertex anchors, additional mesh

initialization methods, and the various other extensions to

basic edge collapse.

References

DeRose, T., Michael, K., and Tien, T. 1998. Subdivision

surfaces in character animation. In Proc. of the 25th

annual conference on computer graphics and interactive

techniques, 85-94.

Hoppe, H. 1996. Progressive meshes. In Proceedings of the

23rd annual conference on Computer graphics and interactive

techniques, 99-108.

Sun, J., Lin L., Fang W., and Heung-Yeung S.. 2007. Image

vectorization using optimized gradient meshes. In

ACM Transactions on Graphics (TOG) 26, no. 3, 11-es.

7

https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://graphics.pixar.com/library/Geri/paper.pdf
https://hhoppe.com/pm.pdf
https://hhoppe.com/pm.pdf
https://hhoppe.com/pm.pdf
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391
https://sci-hub.st/https://dl.acm.org/doi/pdf/10.1145/1276377.1276391

