
Miniature Planet
Generation & Rendering

By Eric Nelson and Zack Gunther
Rensselaer Polytechnic Institute, Spring 2023

Abstract
This paper presents a procedural

method for generating visually appealing
miniature planets with non-physically based
terrain, biomes, atmosphere, and oceans. A
subdivided icosphere is used as the basis of
the planet with texture maps, materials, and
colors all procedurally generated via
sampling Perlin noise to produce visually
striking randomized planets. Oceans were
rendered using low-detail spherical meshes
with high-detail procedurally generated
textures and normal maps. Atmospheres and
clouds were rendered using concentric
spherical meshes with time-dependent
opacity texturing. Real-time and interactive
viewings of the planet were made possible
in the browser via the Quad Tree assisted
LOD (level of detail) system and various
shader-based optimizations.

This project was written in Javascript
using WebGL for accelerated rendering. In
general, the project was broken into five
sections: Generating a spherical mesh,
modifying triangular meshes to produce
geologic-looking features, enhancing LOD
with shader-generated textures, rendering

oceans and atmospheres, and real-time LOD
mesh generation.

Generating a Sphere Mesh
The first step in generating our

miniature procedurally generated planets is
to generate a spherical mesh. One common
algorithm is the UV sphere where a flat 2D
grid is mapped onto a sphere forming
longitude and latitudinal lines [1]. This
method is straightforward and simple to
implement while allowing a continuous
level of detail from simply adding
longitudinal or lateral lines onto the sphere.
UV spheres enable easy texture mapping
and they are named after the “u” and “v”
axis representation for texture coordinates
since x, y, and z are already utilized in world
coordinate spaces. One downside to UV
spheres is that they suffer from uneven
vertex distribution as there is a high
concentration of vertices and edges near the
poles as the longitudinal lines converge on a
single point. Since this project will use
height modulation to generate terrain this
would cause undesirable artifacts as well as
add complexity to LOD systems.

The second sphere generation
algorithm that was investigated was the cube
sphere. A cube sphere is generated by
subdividing a cube using a traditional
subdivision algorithm such as Loop
subdivision or Catmull Clark and projecting
the vertices onto a sphere. This method has
vertex distribution then the UV sphere and
each face of the cube can be treated as a
planar mesh before projection meaning most
traditional game engines and planar mesh
techniques can be used on each face of the
mesh [2]. Along with this, the subdividable



faces lend itself to an intuitive
implementation of LOD that subdivides
each face individually, storing the results
with a quad tree. For these reasons the cube
sphere is extremely popular in industry
games such as the planet exploration game
No Man’s Sky. The major downside with
this technique is the edges of each face of
the cube cause a discontinuity in texture
mapping and normal maps that is not trivial
to resolve.

The third and final sphere generation
algorithm we investigated was the icosphere.
An icosphere is a type of geodesic
polyhedron and can be generated by taking a
20-face Icosahedron and subdividing and
projecting the vertices onto a sphere. A
simple construction of an icosahedron is to
take 3 orthogonal golden rectangles or
rectangles whose side lengths add up to the
golden ratio and connect their vertices to
form the icosahedron [3]. From here we can
utilize Loop subdivision to continually
divide the icosphere producing a smooth and
continuous surface without texture map
discontinuities [4]. This method has the
most even subdivision scheme and since the
project was written from scratch we decided
to base the remainder of this project on
icospheres and include them in our final
implementation. The downside of this
decision is the loop subdivision lacks
granularity with a four times increase in the
number of triangles per subdivision level
which is explored further in the LOD section
of the paper.

An additional sphere generation
technique we hope to explore in the future is
through fibonacci mapping creating the most
evenly distributed vertices but creating a

discontinuous mesh as it needs to be mapped
from a plane to a sphere [5].

Planet Terrain Generation
To generate realistic-looking terrain,

a variety of different approaches were taken.
All of these approaches relied upon
pseudo-random or random vertex
modification, with the goal of being able to
create a varied or bumpy surface with large
general features such as mountain ranges
and valleys, and smaller, more detailed
features.

The first approach explored was
based on the subdivision mesh generation
technique. In this algorithm, after each
subdivision iteration, each vertice’s position
was randomly adjusted radially from the
center of the sphere. This produced a mesh
that appeared spikey, with no real dominant
features such as mountain ranges or valleys.
To account for this, the random adjustment
was decreased each iteration, thus making
the first random adjustments dictate the
overall planet shape, while subsequent
adjustments added more fine details. This
algorithm was relatively efficient as it only
iterated over each vertex just over once on
average. As desired, this produced a mesh
with varying levels of detail as well as
larger, consistent features. However, it did
not produce planet-like features such as
mountain ranges and instead looked rather
random.



Figure 1: Gray, directionally light/shaded rendering
of planet generated using Perlin noise.

The second and final approach used
was based on Perlin noise, and is a common
method used by many for terrain generation
[6]. A 3D Perlin noise algorithm was
implemented, and multiple layers of noise
were added of varying resolutions to
produce a continuous high-resolution 3D
spatial map. Each vertices’ position was
then adjusted radially from the center of the
sphere according to the 3D Perlin value. In
order to create realistic mountain ranges and
valleys, the inputs to the Perlin noise
function were offset by more Perlin noise
but of a slightly higher frequency. This
essentially stretched the noise, stretching
high and low areas into mountain ranges and
valleys, creating the desired effect. In the
end, many layers of Perlin noise were tested
and it was found five layers of varying
frequency were sufficient for generating the
vertex surface features.

Figure 2: Five layers of grayscale Perlin Noise with
zero, five, and ten times noise offset (left to right)

Biome Coloring and Materials
After generating the mesh, the next

step is to color each vertex. An Earth-like
color palette was selected with blue for
water, yellow for sand, green for forest,
brown for mountains, and white for snow.
For each color, a height percentage range
was chosen, and material properties were
assigned. These material properties included
specular reflectivity, time-dependent noise,
relative noise frequency, and more which
will be discussed later. To apply the colors
and materials, each vertice’s relative
percentage radius was found (zero being the
lowest vertex or vertex closest to the mesh’s
center, and one being the highest vertex or
vertex furthest from the center), and the
corresponding color and material were
recorded.

Figure 3: An Earth-like color pallet applied to a
Perlin noise texture



Rendering & Shader Details
Rendering millions of triangles is

computationally complex, thus reducing the
triangle count in any mesh will decrease the
computational cost. Unfortunately, doing so
reduces the level of detail. In order to add
more details than are defined in the triangle
mesh, textures can be added. These textures
can be used to modify vertex coloring and
normal-based directional lighting but can be
challenging to apply to a randomly
generated mesh. To overcome this issue, it
was decided the textures would be generated
in the fragment shader and be mapped to
each fragment depending upon the fragment
position in the object’s reference frame.

To do this, a 3D Perlin noise function
was implemented within the fragment
shader, and the vertex shader was modified
to pass a varying value representing the
fragment position within the object’s
reference frame. Then, multiple different
positional noise functions were implemented
to modify the fragment color and normal
values depending on the surface material.
For example, a specular lighting function
was written to be used on reflective
materials (clouds, snow, and oceans) which
modified the fragment color to produce a
sun-glare effect (See figure 4). Another
function implemented modified the fragment
normal using Perlin noise offset with more
positional noise and the current time (passed
in a uniform to the shader), and when ran
creates a flowing effect reminiscent of ocean
waves.

Figure 4: A blue sphere mesh rendered with
directional specular lighting and the flowing ocean

texture function

Altogether, these fragment shader
functions, the vertex colors, and the material
properties were tuned to create multiple
pseudo-realistic-looking biomes, all while
increasing the perceived level of detail
without increasing CPU computational
expense.

Ocean Generation
To create a planet model that

appeared to have an ocean, a second,
low-detail spherical mesh was generated.
This, when rendered after the main planet
mesh with a low opacity and the ocean
waves shader function, created a suitable
ocean. However, this method did not capture
the depth of the water in the color, as deeper
regions should be darker blue than shallow
regions. To fix this problem, many
concentric smaller meshes with low opacity
were generated and rendered from the inside
out. This solved the depth-color issue but
was remarkably computationally expensive.



To save on computational expense, the
planet mesh vertex colors were instead
modified to be darker in deeper sections of
the oceans.

Another issue discovered was when
viewing water from a shallow angle, the
water should appear darker. To fix this, the
shader was modified to adjust opacity
depending on the viewing angle, specifically
making shallow viewing angles have a
higher opacity, thus decreasing the perceived
water color.

Rendering Atmosphere and Clouds
To create a realistic or artistic

rendering of a planet, an atmosphere with
clouds is a necessity. Commonly, rendering
atmospheres is achieved by path tracing and
or ray tracing algorithms, in which the
distance traveled through the atmosphere is
recorded and used to modify the
accumulated fragment color [7]. These
methods researched required a different
rendering technique and were not considered
for long. However, a three-pass rendering
algorithm was implemented in which the
first pass would render the scene to a
texture, but the color of each pixel would be
determined by the distance traveled to the
atmosphere. The second pass would render a
texture representing the distance to the back
of the atmosphere or to the planet mesh.
Unfortunately, this was very
computationally expensive as it required
rendering the entire planet mesh twice for
each frame. Along with this, it was
incredibly challenging to fix edge cases such
as rendering from within the atmosphere,
was incapable of rendering clouds, and
subsequently was abandoned.

Instead, an approach that was
experimented with for the ocean was applied
to the atmosphere. Many white, low-opacity
concentric spheres were generated and
rendered from inner to outer after the planet
and water meshes were rendered. As each of
these meshes were of such low opacity, it
was found the triangle count for each could
be reduced dramatically to only 512
triangles per mesh, slightly increasing
rendering performance while maintaining
visual quality.

To render the clouds, a new fragment
shader function was implemented. This
function, using positional and
time-dependent Perlin noise functions, was
used to modify the opacity of each fragment
in each atmospheric mesh. After fine-tuning,
this function was able to create acceptable
cloud formations, while not substantially
increasing computational cost.

Figure 5: The atmospheric meshes rendered alone
using the opacity-varying fragment shader function



Level Of Detail System
Since our project is focused on real

time generation of procedural planets in the
browser there are strict polygon count
restrictions and performance constraints that
can be eased by introducing a Level of
Detail system or LOD. The LOD scheme we
decided to go with was a recursive
subdivision of the icosphere faces based on
the location and direction of the camera.
Midpoint maps are maintained to track child
vertices created by two parents to reuse
when neighboring triangles subdivide.

Since the Loop subdivision of the
sphere results in each LOD having four
times the number of triangles then the last,
each division can be computationally
expensive and noticeable to the end user.
Preferably, this division happens out of view
of the users attention (although for our demo
this threshold is reduced so the LOD can be
visualized) so ay distance threshold is
preselected then divided by the LOD
number associated with that specific triangle
face squared to make the heaviest of the
LOD transitions at the highest levels
exponentially harder to trigger as they add
an exponential number of triangles. At the
highest level of subdivision a separate max
depth threshold is reached preventing
overloading WebGL.

With the distance threshold our
subdivision scheme also considers the
direction the camera is facing to ignore back
facing triangles in the subdivision threshold.
The orientation on the sphere of each
triangle is considered to eliminate all
triangles on the back half of the sphere
(relative to the camera) from being
considered for additional subdivision. This

simple visibility detection drastically
reduces the number of triangles considered
for subdivision but introduces a new
problem of mountains disappearing over the
horizon due to their orientation of the sphere
facing away from the camera but their peaks
still above the horizon. These extreme
mountains are common on our miniature
planet and their sudden removal makes this
optimization extremely noticeable.

Figure 6: Miniature planet where the
mountain ridges peek above the horizon.
To resolve this issue the normal of

each face was considered so a triangle
facing towards the camera will always be
considered for sub division and an
increasing threshold is utilized to make low
LOD divisions easy and high LOD divisions
difficult. This ensures all of the popping
artifacts happen on the back face of the
sphere out of view of the user while
allowing for a halving of the number of
triangles.

Level Of Detail: Quad Tree
The recursive nature of the LOD

system lends itself well to an quad tree
based caching method for storing computed
LOD. This drastically reduces frame
stuttering associated with terrain generation
pauses. The quad tree we decided to
implement stores each triangle as a node and



all of its subdivided triangles as children to
allow access to individual triangles in
logarithmic time. This quadtree is wrapped
in the SurfaceTree class where the 20 faces
of the icospheres become the roots for this
quadtree mesh. Storing the terrain in a quad
tree allows for the colors, materials, and
vertices to all be stored in large buffers
while only the indices of the triangles are
searched for the triangles to export for each
frame’s LOD. Once the quad tree is
recursively descended to collect the indices
for each frame only the needed vertices,
colors, and materials can be sampled and
sent to the rendering pipeline to reduce load
on the shaders. After the introduction of the
quad tree the LOD system was operating in
real time with a majority of the performance
hit coming from loading the object buffers
with different data each frame causing
frequent garbage collection. This could be
avoided in the future by restructuring the
buffer management.

Level Of Detail: Stitching Holes
LOD implementations frequently

cause mesh discontinuity issues where the
edges between different LOD have vertices
along edges that aren’t shared [8]. For our
project, the Perlin based height modulation
may place a midpoint below or above the
edge corresponding to its parents causing a
noticeable hole in the mesh.

Figure 7: Holes (in blue) formed between the border
of a high LOD (bottom) and a low LOD (top)

To resolve this the mid point map
created earlier to ensure midpoint vertices
were shared among neighboring triangles
was modified to record the number of
accesses. If an edge was accessed in the
descent of the quad tree an even number of
times it must be shared by two triangles in
the final mesh and there is no discontinuity.
If the edge was only accessed an odd
number of times it means the edge is at the
border of two different LOD. Since only the
even or oddness is important this is
represented by a boolean flag indicating
whether the edge is a border or not.

Once the border edges have been
identified the midpoints of the higher LOD
mesh are simply moved to be along its
parents edge thus making the discontinuity
in the mesh invisible [8]. With the holes
removed the LOD border is less distracting
as it progresses along the terrain.

Figure 8: Border of a high LOD (bottom)
and a low LOD (top) with the stitching algorithm

applied



Results and Conclusion

Figure 9: Final rendering of the generated planet with
oceans and atmosphere

Overall, a planet generator was
developed capable of creating pseudo-
realistic miniature planets. A system for
rendering planet meshes was developed and
is capable of rendering a variety of planets
with different colors and textures through
the color and material vertex attributes.
Along with this, a method for rendering
acceptable clouds and oceans was
developed, all of which do not require path
tracing or raytracing. In the end, this
generator and renderer can run in real-time
in a web browser at acceptable framerates
(approximately 55 fps when running on an
Intel i7 9th gen CPU with a GTX 1650
graphics card).

However, as the time constraints for
this project were rather severe, there are
many improvements that could be made to
this project. Firstly, improvements could be
made to the planet mesh generation by
adding asynchronous abilities to reduce page
load times. Along with this, an addition of
the sqrt(3) subdivision paper would help

reduce the exponential increase of triangles
in the LOD from 4 times to 3 times with
each subdivision [9]. More could also be
done to tune the LOD mesh generation to
reduce visible differences between separate
LOD sections. Finally, more features could
be added to the shader to allow for a
multitude of different features. As an
example, cloud color modifiers could be
added to enable clouds to be different colors
than the atmosphere.

Project Roles
Eric Nelson:
- Spherical Mesh Generation
- Level Of Detail System
- Quad Tree
- Integration of the non-LOD and LOD
mesh generations
- Planet.js implementation

Zack Gunther:
- Planet mesh vertice modification
- Vertex coloring and material assignment
- WebGL rendering pipeline with lighting
- Shader texture generation
- Ocean generation and shader effects
- Atmosphere and cloud generation and
shader effects

References & Resources

[1] Mahdavi-Amiri, Alderson, and
Samavati, “A survey of Digital Earth
representation and visualization,” PRISM
Home, 07-Apr-2015. Available:
https://prism.ucalgary.ca/handle/1880/50407

[2] Zucker & Higashi, “Cube-to-sphere
projections for procedural texturing and
beyond,” The Journal Of Computer

https://prism.ucalgary.ca/handle/1880/50407


Graphics and Techniques, vol.7, no.2, 1-22,
2018

[3]
Josephine Sheng, “Take and Make:
Icosahedron from Golden Rectangles, ”
MathHappens Blog, May 6, 2021. Available:
https://www.mathhappens.org/take-and-mak
e-icosahedron-from-golden-rectangles/#:~:te
xt=The%20object%20in%20the%20photo,(
1%3A1.618033%E2%80%A6).

[4] Charles T. Loop. Smooth subdivision
surfaces based on triangles. Master’s thesis,
Department of Mathematics, University of
Utah, August 1987.

[5] Keinert, Innmann, Sanger, and
Stamminger, “Spherical fibonacci mapping,”
AMC Transactions on Graphics,” vol. 34,
no. 193, 1-6, Nov, 2015

[6] Rose & Bakaoukas, “Algorithms and
Approaches for Procedural Terrain
Generation - A Brief Review of Current
Techniques,” Research Gate, vol. 10, no.
1109, Sep 2016

[7] Sébastien Hillaire, “A Scalable and
Production Ready Sky and Atmosphere
Rendering Technique,” Eurographics, vol.
39, no. 4, 2020.

[8] Nick Gildea, “Fixing a seams bug,”
Nick’s Voxel Blox, July 26, 2015. Available:
https://ngildea.blogspot.com/2015/07/fixing-
seams-bug.html

[9]
Leif Kobbelt, “Sqrt(3)-Subdivision,”

Max-Planck Institute. Available:
https://www.graphics.rwth-aachen.de/media/
papers/sqrt31.pdf

https://www.mathhappens.org/take-and-make-icosahedron-from-golden-rectangles/#:~:text=The%20object%20in%20the%20photo,(1%3A1.618033%E2%80%A6)
https://www.mathhappens.org/take-and-make-icosahedron-from-golden-rectangles/#:~:text=The%20object%20in%20the%20photo,(1%3A1.618033%E2%80%A6)
https://www.mathhappens.org/take-and-make-icosahedron-from-golden-rectangles/#:~:text=The%20object%20in%20the%20photo,(1%3A1.618033%E2%80%A6)
https://www.mathhappens.org/take-and-make-icosahedron-from-golden-rectangles/#:~:text=The%20object%20in%20the%20photo,(1%3A1.618033%E2%80%A6)
https://ngildea.blogspot.com/2015/07/fixing-seams-bug.html
https://ngildea.blogspot.com/2015/07/fixing-seams-bug.html
https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf
https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf

