Interactive Rendering of Characters with Cel Shading and Outlines

Justin Hung, Alex Riddle
Rensselaer Polytechnic Institute (RPI), Troy, NY

Abstract

In this project, we present basic methods of loading and rendering character models, cel shading (known otherwise as toon shading),
and outlines. In particular, we discuss extending the traditional diffuse lighting technique to include cel shading using GLSL
shaders, a method of rendering outlines using the OpenGL stencil, rim lighting (which often accompanies cel shading), and halftone
shading. We also present an interactive Graphical User Interface (GUI) that allows users to expriment and interactively adjust
properties of these rendering techniques in real time.

Keywords: Cel Shading, Rendering Outlines, Non-Photorealistic Rendering, Rim Lighting, Interactive GUI

Contents
1 Introduction 1
2 Related Works 1
3 Loading and Texturing Character Models 2
3.1 The Wavefront OBJ File Format 2
3.2 Loadingtextures 2
3.3 Rendering the model with OpenGL 2
4 Cel Shading 2
4.1 Overview of cel shading 2
4.2 Extending diffuse lighting to cel shading 3
5 Outlines Using the Stencil Buffer 3
5.1 The Scaling Probem 3
5.2 Using the OpenGL Stencil Buffer. 3
5.3 Coloring the Outline 4
6 Rim Lighting 4
6.1 Overview of Rim Lighting 4
6.2 Implementation of Rim Lighting 5
7 Halftone Shading 5
7.1 Overview of Halftone Shading 5
7.2 Our approximate implementation 5
8 Interactive Graphical User Interface (GUI) 5
8.1 IntroductiontoImGui 5
8.2 Overview of GUI in our application 6
8.3 Shader Properties Window 6
9 Limitations and Future Work 6
Email addresses: hungj2@rpi.edu (Justin Hung), riddla@rpi. edu
(Alex Riddle)

10 Conclusions / Summary of Results 7
11 Project Organization 7
12 References 7

1. Introduction

Cel shading, known also as toon shading, is one of the sim-
plest non-photorealistic rendering techniques used to give char-
acters a cartoon look. This technique can be found everywhere
from animated movies and TV shows to video games. Some
recent examples of video games using this technique are The
Legend of Zelda: Breath of the Wild (Nintendo, 2017), and
Genshin Impact (miHo Yo, 2020).

Cel shading is often used in conjunction with outlines and
rim lighting, as in the above example of Link from Breath of the
Wild (BOTW). We sought to implement these rendering tech-
niques to come up with convincing renders of characters like
Link that are very close to the original works, but with minimal
code. We also implement these techniques in a dynamic way
that can be altered in real time to allow for adjustment of the
number of properties such as the number of cel shading zones
and the outline thickness.

We believe that knowing how these rendering techniques
work, as well as getting more practice with shaders and
OpenGL in general, will be useful for those of us trying to enter
the video game industry.

2. Related Works

[1] Raul Reyes Luque (2012) explains in “The Cel Shading
Technique” the fundamentals of cel shading and outlines. He
also includes an edge detection algorithm for creating the out-
lines and a color quantization algorithm.

[2] Abhishek Kumar (2014) describes in ”Toon Shader Meth-
ods for Cartoon-like Rendering” three methods of toon shading.
Method 1 is based on diffuse lighting, Method 2 uses a depth
parameter for colors, and Method 3 uses a 2D texture to assign
colors.

[3] Bert Freudenberg (2004) explains in "Real-Time Halfton-
ing: Fast and Simple Stylized Shading.” how to implement a
system to create halftone screens from images that resemble
pen-and-ink drawing styles in a fast way for real-time environ-
ments.

[4] Won-Ki Chung (2006) discusses in “Rendering Style: Toon
Shading - Electrical Engineering and Computer Science” the
concept of the cel shading technique and how it is used in vari-
ous video game titles. such as Nintendo’s 2002 title, The Leg-
end of Zelda; The Wind Waker.

3. Loading and Texturing Character Models

3.1. The Wavefront OBJ File Format

In order to load character models and textures we chose to
use the standardized OBJ and MTL file formats from Wave-
front. Wavefront OB files are a type of file format for geometry
definitions that was first developed by Wavefront Technologies
around 1990. Today, OB files are still widely used and trivial
to parse as they are text-based. Along with the OBJ file, there
is the Wavefront MTL file format for the material definition,
which is also simple and text-based. For the sake of our project,
we decided to focus on these as they are the simplest and finding
example models from sites like models-resource.com provides
plentiful example models.

The OBJ file format consists of a list of “commands” such as
v for vertices, vn for normals, vt for texture coordinates, and f
for faces, among many others. These particular commands are
used to form a single mesh. Larger, complex character mod-
els will often have groups and/or separate objects. These are
denoted by the g and o commands, respectively, and are used
to indicate when a new mesh is being constructed. Each mesh
can be assigned a material with the usemtl command, which
changes the active material for the current mesh. To render
these complex models correctly, we will need to break up the
model into its meshes and corresponding materials, so that we
can update the OpenGL texture unit and shader properties for
each mesh being rendered.

To facilitate this, we implemented a simple OBJ file parser
with the following algorithm:

1. Push an empty mesh object to the list of meshes.

2. Collect the “RawFaces” of the current mesh, which consist

of a list of indices for the vertex, texture coordinate, and

normal (3 of each per face as we only support triangles).

If a new object or group is declared, go to step (1).

4. After all meshes are pased, iterate over all “RawFaces”
and push the actual vertex, normal, and texture coordinate
vectors to the corresponding mesh object, such that the in-
dices become relative to that mesh.

5. Load any material files denoted by mt11ib and map them
to an index for meshes to reference.

et

3.2. Loading textures

To load the textures for each material we utilize a tiny,
header-only library called stb_image, which is in the public
domain and is available from GitHub. This library supports
most image formats that we can use for easy loading of textures
of any format. When we load these textures into OpenGL we
ensure that the u and v coordinates are set to repeat to handle the
cases where texture coordinates are negative (which is often the
case). For texture mapping, we simply tell OpenGL to wrap the
S and T coordinate values using GL_REPEAT to handle negative
texture coordinates. We then simply bind the current texture to
the TEXTUREO texture unit, and add a uniform sampler variable
inside the fragment shader. To render the texture on the model,
we use the texture2d () GLSL function to sample fragments
of the texture map using the new sampler variable.

3.3. Rendering the model with OpenGL

On the OpenGL side, we use our .obj loader to divide the
mesh into separate buffers for the vertices, normals, and texture
coordinates. This is opposed to having all of these next to each
other contiguously. Rendering then looks like the following:

glDrawElementsBaseVertex (GL_TRIANGLES,
mesh.numIndices, GL_UNSIGNED_INT,
(voidx*) (sizeof (unsigned int) * mesh.baseIndex),
mesh.baseIndex) ;

where mesh.baseIndex refers to the base index of where
the current mesh vertex attributes are in the OpenGL buffers.
The base indices are now needed since each mesh is relatively
indexed; i.e., the index buffers for each mesh all start at 0, hence
why we also need to add baseIndex at the end to tell OpenGL
to add the value of baseIndex to each corresponding value.

This approach allows us to selectively render each mesh of
the larger model in a clean way, allowing us to switch the ma-
terial and texture sampler in the shader between each render.
This is required to render the more complex models with differ-
ent materials and textures.

4. Cel Shading

4.1. Overview of cel shading

This method of shading divides a model’s surface into (usu-
ally two, but sometimes more) discrete zones based on how
illuminated each spot on the surface is and lights each zone
uniformly. This technique is used to approximate the style of
old fashioned painted animation cels where distinct colors were
used to convey value and depth.

-

Figure 1: A comparison of diffuse lighting (left) and cel
shading (right) on Link from BOTW

The level of shading, or the “cel factor,” corresponds to the
dot product of the light factor and the surface normal for a given
pixel. (Five different shading regions depending on the sampled
surface luminance can be shown in the following two images.)

4.2. Extending diffuse lighting to cel shading

In typical diffuse lighting, the graph of light intensity given
the angle between the light vector and the surface normal is the
following smooth curve from the cos(x) function:

Diffuse Factor

Dot Product of Light Vector and Surface Normal

Figure 2: Diffuse lighting using traditional cos(x)

With cel shading, however, we simply divide this curve into
discrete “zones” of shade, such as the following:

Cel Factor

Dot Product of Light Vector and Surface Normal

Figure 3: Diffuse lighting with steps/zones (cel shading)

If we already have diffuse lighting implemented in our frag-
ment shader, then we can modify our diffuse factor to achieve
this effect in a fairly straightforward way:

float celFactor = 1.0f / celSteps;
diffuseFactor = ceil(diffuseFactor * celSteps)
* celFactor;

Note that the use of ceil means that characters will be ren-
dered generally brighter as we round up to the nearest step/zone.
floor could be used to yield the opposite effect; characters
would generally be rendered darker.

5. Outlines Using the Stencil Buffer

5.1. The Scaling Probem

In concept, in order to create an outline for a 3D model,
one would render a scaled up version of the model first as a
solid color like black, then render the actual model on top of
it. One of the immediate problems presented by simply scaling
the original mesh proportionally is that a proportionally larger
mesh will only be able to properly surround the original if the
mesh is strictly convex. In the case of more detailed meshes
with appendages like limbs or more cavernous details like skin
wrinkles, parts of the original mesh will stick out from within
the larger mesh.

(Bold and Brash (SA Style). SarkenTheHedgehog, 2019)
(Edited) (1)

To solve this problem, the mesh must be scaled up dispro-
portionately. That is, every face of the mesh should be extruded
outward at a consistent distance away from the original posi-
tion and scaled with respect to the normals of each of the face’s
vertices.

R

Figure 4: Disproportionate face extrusion

The simple solution to this problem that we employ involves
the GLSL vertex shader. We can simply alter gl Position
to extrude out the vertices using the normal multiplied by the
desired thickness, as can be seen below:

gl_Position = wvp *
vec4(Position + Normal * thickness, 1.0);

5.2. Using the OpenGL Stencil Buffer

Now, the first step in our OpenGL rendering code for the out-
lines is to render the model as normal. But before we do this, we
enable the stencil buffer with GL_ALWAYS such that, wherever
we have fragments of our character rendered, the correspond-
ing pixels are given stencil values of 1. The OpenGL code is as
follows:

glEnable (GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilFunc (GL_ALWAYS, 1, O0xff);
glStencilMask(0xff) ;

RenderModel () ;

To demonstrate this, we will use Fox from Nintendo’s Star
Fox Adventures (2002), as the model is complex and works
well for this method. At this point, the stencil buffer looks like
the following (in the case of Fox):

Figure 5: Stencil representation of Fox from Star Fox
Adventures. Nintendo, 2002.

Next, we render the model again, but this time using the out-
line shader. We also change our stencil function to only pass
where we have Os in the stencil, i.e., where we do not have
fragments from the first render of the model. This allows us to
render only the scaled model and avoid rendering over the orig-
inal model. We also disable the depth test here to ensure that
we render the scaled model in front of the original model.

glStencilFunc (GL_NOT_EQUAL, 1, Oxff);
glStencilMask (0x00) ;

glDisable (GL_DEPTH_TEST) ;

RenderModel (m_outlineShader) ;

Now, if we fix our fragment shader for the outline to always
return white, we get the following for Fox:

Figure 6: Stencil Outline render of Fox from Star Fox
Adventures. Nintendo, 2002.

5.3. Coloring the Outline

Our method of coloring the outline is basic. We simply sam-
ple the texture in the fragment shader, invert the color, and
darken it. This approach is unlikely to work well for darker
textures, as you would be left with an even darker outline color.
The fragment shader is as follows:

vec3 outlineColor = vec3(1.0f)

- texture2D(gSampler, TexCoord0) .xyz;
outlineColor *= 0.05f;
FragColor = vec4(OutlineColor, 1.0f);

To add contrast for darker textures, we could simply check if
the texture started dark and increase the brightness, which lends
itself to future work.

6. Rim Lighting

6.1. Overview of Rim Lighting

Rim lighting is a technique used in photography where the
subject is illuminated from the back such that the very edges of
the subject glow, but the majority of the actual subject remains
in shadow. In the context of cel shading and similar rendering
techniques, however, rim lighting is frequently used to supple-
ment cel shading and provide extra definition and contour to
otherwise flatly shaded models.

Figure 7: A comparison of a model without rim lighting
(left) and a model with rim lighting (right)

6.2. Implementation of Rim Lighting

With typical diffuse lighting, the intensity of the light is at
its peak when the light is perpendicular to the surface. Rim
lighting is the opposite: triangles that are directly facing the
viewer are dark, while triangles facing away are more illumi-
nated. The normal lighting equation still applies. The GLSL
fragment shader code is as follows:

float rimFactor = max(0.0f, 1.0f - dotProd);
color = DiffuseColor * pow(rimFactor, intensity);

Intuitively, we “invert” the diffuse lighting formula in the
sense that we make surfaces brighter as the light and normal
vectors begin to tilt away from each other, hence the 1.0f -
dotProd. Then we raise the resulting factor to the specified
rim lighting intensity to find the resulting additive color in the
lighting equation.

7. Halftone Shading

7.1. Overview of Halftone Shading

Halftone shading is another rendering technique like cel
shading. Halftone shading, like cel shading, typically uses two
distinct levels of shadow intensity or color to convey depth. In
contrast to cel shading, halftone shading is almost exclusively
used in the printmaking industry when creating images comic
books, newspapers, or other media that require images to be
made with many small dots. Furthermore, halftoning is often
used to create a ’retro” look, as it particularly mimics the poor
quality and limited color set of old printers.

In contrast to cel shading, traditionally, halftone shading
zones are determined by sampling the entire image (with the
model within it) at specified points on a grid. A circular
zone surrounding each point on the grid is created, with a ra-
dius determined by the luminance sampled at that particular
point (darker points get larger circles, while brighter points get
smaller circles or a circle with a radius of 0). Then, only the
pixels within the circles at each point are colored as the darker
of the two tones.

(Ronja’s Turotials - Halftone Shading. Ronja, 2019) (2)

7.2. Our approximate implementation

While we were not able to perfectly recreate this effect, we
were able to approximate it using some basic techniques. The
main drawback with this alternative is that the dots present are
all uniformly sized. In this approximated version, there are

three zones shaded by two tones: the most unlit region (region
1), the somewhat lit region (region 2), and the most lit region
(region 3, which effectively equates to the absolute rim). Pixels
in region 1 are effectively cel shaded with the existing tech-
nique. Pixels in region 2 are shaded only if they fall within a
pattern of designated circles on a checkerboard grid. Pixels in
region 3 are not shaded at all using the darker tone.

Figure 8: An approximated halftone shader

While this technically does not look the same way that most
computer generated halftone shading does, we believe that our
approximated version has the advantage of more closely mim-
icking actual printing dots, as shown below.

s
\E

(10 Ways to Use Halftones in Photoshop, Retro Supply Co.)
3

8. Interactive Graphical User Interface (GUI)

8.1. Introduction to ImGui

We use the simplistic “Dear ImGui” library (4), an
immediate-mode user interface library that has a small code
footprint and sees widespread use in the video game industry.

The term “immediate-mode” originates from the fact that the
GUI is drawn immediately in a single frame. In our case, our
App::Render function calls Gui::Render which calls the virtual
OnGui functions of the base window objects. E.g., for a single
frame, the following code may be executed to display a button:

if (ImGui::Button("Click Me!"))
printf("Clicked!\n");

As soon as the button is clicked, the if statement activates.
This simple way of creating Uls is extremely productive for
experimental projects and debugging, such as in our case.

8.2. Overview of GUI in our application

The GUI can be toggled using the ’g’ key in our application.
The GUI allows users to adjust the light color, ambient and dif-
fuse intensity, as well as properties for cel shading, rim light-
ing, outlines, and halftone shading. Additional options include
adjustments for the camera and scene where users can place
objects and alter the camera movement speed as necessary.

8.3. Shader Properties Window

The shader properties window is where all shader properties
can be tuned in real time. This allows for experiments and live
debugging, as you are also able to recompile the shader code in
real time and see any error messages (printed to console).

¥ Shader Properties
¥ Light

£mb

Diffuse Int

| RPN

ding Steps

4, 000 Rim Intensity
Rim Light
¥ oukline

outline Thickness

e Shading

Figure 9: The shader properties window

9. Limitations and Future Work

Our method of outlines is very simple and does not work
for models with sharp vertices. In particular, any vertices that
create acute angles create jarring gaps (at the very least, this
issue is less noticeable with obtuse angles).

Figure 10: A gap in the outline at a sharp vertex

Our rim lighting is not quite accurate and appears to make
characters brighter than they should be (currently, our rim light-
ing fades, similar to something lit via normal diffuse lighting,
as another student pointed out during our presentation).

[p}

Figure 11: Bright Link from BOTW (Buggy Rim Lighting)

Our half tone shading is not fully accurate, but our approach
is good enough to be used in most cases in various video games.
We came up with a number of other unsuccessful methods of at-
tempting this effect, such as the following, which more closely
resembles a technique called “dithering,” wherein every other
pixel is either black or white to create the illusion of trans-
parency:

Figure 12: Failed halftone attempt that closely resembles
dithering

10. Conclusions / Summary of Results

Cel shading itself is very simple to implement, but rendering
outlines and rim lighting are more challenging to perfect. Rim
lighting can be hard to get right, and may not be applicable in
all scenarios but nonetheness provides an added level of detail
to cel shaded models. Outlines need to be the correct color to
provide enough contrast, and must extrude out from the model
without artifacts (in our implementation we will often get arti-
facts from hard edges).

Our cel shading implementation is perfect, and we can render
characters and get close results to the games from which these
characters belong (e.g., Link from BOTW). Our simple vertex
shader approach to outlines works for many models, except for
those with hard edges, in which case the outline can very easily
explode and create artifacts. Our rim lighting implementation
appears buggy, and makes characters appear brighter than they
should in most cases.

We have found that we can get decent results with these sim-
ple implementations for simpler characters, but there is much
more work to be done to support a wider range of characters,
particularly those that demand rim lighting and have hard edges.

11. Project Organization

This project took approximately 120 hours of work to com-
plete across time spent researching, writing code, and writing
this final report.

Member responsibilities:

e Alex: OpenGL renderer, model loading, controls, GUI,
cel shading, stencil code for outlines, obj loader

e Justin: Rim lighting, halftone shading, model conversion,
texture mapping, outline shader

12. References

References

[1] SarkenTheHedgehog. ”Bold and Brash (SA Style).,
https://www.deviantart.com/sarkenthehedgehog/art/Bold-and-Brash-
SA-Style-823706977

[2] Ronja. “Halftone Shading.” Ronja’s Tutorials, 2 Mar. 2019,
https://www.ronja-tutorials.com/post/040-halftone-shading/.

[3] RetroSupply Co. “10 Ways to Use Halftones in Photoshop.” RetroSupply
Co., https://www.retrosupply.co/blogs/tutorials/10-ways-to-use-halftones-
photoshop.

[4] “An Introduction to the Dear Imgui Library - Blog - CONAN.IO.”
Conan C/C++ Package Manager Official Blog, 26 June 2019,
https://blog.conan.io/2019/06/26/An-introduction-to-the-Dear-ImGui-
library.html.

[5] “Simple GPU Outline Shaders.” i07m.Com,
https://io7m.com/documents/outline-glsl/d0Oe61.

