
Parallel Baking of Colors in Semi-Reflective Scenes
Precomputing a Ray-Trace Map to Permit Real-Time Visualization

Ally Robinson
Computer Science

Rensselaer Polytechnic Institute
Troy, NY United States
ally@purplish.blue

Gabriel Jacoby-Cooper
Computer Science

Rensselaer Polytechnic Institute
Troy, NY United States
rensselaer@gabrieljc.me

ABSTRACT
In this paper we show a method of baking colors onto a
mesh for later real time rendering. The baking process can
be run in parallel in order to reduce the time spent
rendering, which can be rather substantial. The system
allows both variable baked color resolution, and variable
refinement depth on the baking process. Choosing values
for these parameters and then running the baking process
then generates a mesh that has per-vertex color information
from evenly sampled angles around the vertex. This allows
the real time renderer to interpolate between these different
viewpoints angles to get a semi-accurate color from any
perspective.

While our current implementation has some limitations, it
does provide some unique benefits such as linear runtime
with respect to bounce depth, high level of parallelizability,
real time viewing of baked results, and the potential to
include many other ray-tracing techniques.

KEYWORDS
Parallel, Ray Tracing, Mesh Baking, CUDA, MPI,
Precomputation

1 Introduction
Modern graphics hardware continues to improve, but high
quality real time ray tracing still remains far out of reach.
For many aspects of rendering, this can be worked around
or is fine to sacrifice for performance.

One such aspect is reflections. While reflections can be
cheated by using environment maps or by baking lighting
into a mesh such that it appears to have indirect reflected
lighting, these approaches still sacrifice quality.
Environment maps can not do self reflections without
careful tuning, and it isn’t practical for some meshes to

encode environment maps on all the objects as the memory
use would be too significant. Baking lighting onto a mesh
also has problems, while very useful and providing high
quality results for diffuse scenes, specular reflections are
not incorporated and reflected lighting would require a
more complicated approach such as photon mapping.

To address these problems, we provide our parallel mesh
baking approach. This allows both reflected indirect
lighting, self reflections, and while not small, less memory
usage than more detailed environment maps. While our
approach does not work well where sharp reflections are
needed, such as a scene including a mirror, for those that
are mostly glossy reflections, it has the potential for very
good results.

2 Review of Related Work
Pichler, et al. introduce a method for accelerating ray
tracing with a precomputation stage that rejects certain
ray-triangle intersections[4]. Chen, et al. interpolate
between viewpoints at the pixel level at runtime[5]. Purcell,
et al. parallelize a ray caster on programmable graphics
hardware[6], though their technique is fit into the standard
rasterization pipeline instead of the general-purpose parallel
capabilities that we utilize via CUDA.

3 Implementation
Implementation consists of a few different components.
Since the baking of the meshes to put the color information
into them and the rendering are removed, and can be done
independently, they are written as two separate programs.
Additionally, we had to create a new file format to hold the
baked data for it to be rendered later by the renderer. All
together this gives us three mostly separate components.

3.1 Bake Shop File Format

A. Robinson, et al.

The Bake Shop file format is the format that we came up
with to hold our new baked mesh data. We chose the
extension ‘.bs’. This format follows a very similar format
to that of the ‘.obj’ files that are often used in graphics
applications. It consists of three sections; vertexes,
materials, and then quads. Each section should be separated
from the next with a blank newline.

The first section, vertexes, contains the vertices and the
color data that is baked into them (assuming it exists). This
is encoded by putting the x, y, and z coordinates on a line
separated by spaces.

bakeshop_example.bs

1.0 0.0 1.0
-1.0 0.0 1.0
-1.0 0.0 -1.0
1.0 0.0 -1.0

: 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
: 1.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0

0 1 2 3 0
0 3 2 1 1

Figure 1: Example Bakeshop File

If we want to give any baked colors for the vertex, we add a
viewpoint entry. A viewpoint entry consists of putting a bar
character, ‘|’, on the next line followed by the x, y, and z for
a possible incoming normal for the vertex and then the r, g,
and b component of the color that one should perceive the
vertex as being from this angle. As many viewpoint entries
as desired can be added to the vertex by repeating the
format described with a new angle.

After the vertex section, we get the materials section. This
consists of all the materials used in the mesh. Each material
should be put on its own line in the following format; a
colon followed by the rgb values for the diffuse color, then
the rgb values for its reflective color, and finally the rgb
components of its emissive strength for each of those
components. One can add as many materials as they’d like,
including none.

Finally, this leaves the quad section. This section contains
all of the quadrilaterals in the mesh (quadrilaterals are the
only supported polygons in our current implementation).
Each quad is put on its own line and consists of 4 integers

indicating the four vertices that make it up followed by one
more integer indicating the material. A n represents the
(n+1)th vertex listed in the first section. Similarly for the
material number. If one wishes to give a quad no material,
they can put the number -1.

At the end of the file, directly after the quad section, put a
single bang ‘!’ on a new line.

3.2 Baking Program
The Chef is a parallelized program that takes a “raw” Bake
Shop file as input and produces a “baked” Bake Shop file
as output. The raw input file consists of vertices, materials,
and faces that represent the geometry of a 3D scene. Any
viewpoints that are encoded in the input file are ignored
because the expectation is that those viewpoints will be
generated by the Chef itself. The baked output file also
consists of vertices and faces, but it by default lacks
material data because the shading is now fully specified by
the viewpoint data.

For each vertex in the input file, the Chef generates a
user-specified number of viewpoint angles around that
vertex on a “virtual sphere”. Each viewpoint angle is
represented as an inverse normal vector that points “into”
the virtual sphere (equivalent to a normalized version of a
camera ray). The ray trace begins in the first iteration at
each viewpoint for each vertex by reflecting that inverse
normal vector off of the mesh at the relevant vertex using a
“vertex normal” that’s averaged from the adjacent face
normals. A color value is generated using material
properties that are also averaged from the adjacent faces.

Additionally, factors such as the surface’s reflectivity and
the view of other emissive faces are taken into account. In
all, we are performing an incomplete implementation of
Whitted Ray Tracing[3].

Further ray-trace iterations are discussed later in this
section, but it’s important at this point to explain how the
Chef is parallelized. Multiple Chefs can work together in
parallel in a Kitchen, which assigns a batch of vertices to
each Chef. Using the Message-Passing Interface (MPI),
each Chef is assigned its own MPI rank. A Kitchen, in this
sense, is just a set of parallel Chefs that can communicate
with each other over MPI to bake a single ray-trace map
together. Each Chef can be further parallelized by

dispatching sub-batches of its assigned vertex batch to an
NVIDIA GPU in parallel via CUDA.

A crucial component of our baking approach involves
complex I/O interplay between the different Chefs in a
Kitchen. Because the vertices are split across different
Chefs, color calculations that one Chef performs naïvely on
vertices in the scene that aren’t part of its vertex batch
using just the original material properties would produce
incorrect results. To remedy this, each Chef must be able to
incorporate color calculations that other Chefs have
previously performed. After the first ray-trace iteration, in
which only a single bounce per viewpoint per vertex is
performed, the Chefs synchronize with each other using an
MPI all-gather operation, which combines a base gather
operation with a broadcast operation to collect the
computed color data from each Chef and to propagate those
data to all of the Chefs in advance of the second ray-trace
iteration. Each Chef packs the computed color values for its
vertex batch into a large, one-dimensional array of doubles
that is then sent into the MPI collective to be broadcast to
all of the other Chefs. This process is repeated for each
subsequent ray-trace iteration until the user-specified limit
is reached. One benefit of this iterative approach is that it
could easily support intermediate checkpointing as a future
extension.

The last step in the baking process involves writing the
baked data out to a new Bake Shop file. In the vertex
section of the file, each Chef is assigned a chunk in which
it can write data. The length of each chunk, which is
constant across all Chefs in a single Kitchen, is
dynamically determined based on the number of vertices
and viewpoints. Each Chef uses parallel MPI I/O
operations to write out the viewpoint data for its own vertex
batch within its assigned chunk of the output file. Once all
of the vertices and viewpoints have been written in parallel,
the Chef with MPI rank 0 writes out the face data
sequentially. Because the MPI framework adds null bytes
as padding between file chunks, a post-processing stage
removes all null bytes from the output file.

While the Chef program is optimized to be executed in
parallel, it can be effectively serialized in the degenerate
case of a single MPI rank. Additionally, to support serial
execution on computer systems that do not support MPI,
the codebase can use dependency injection during
compilation to emulate a single MPI rank using UNIX
system calls and the C standard library.

3.3 Visualization Program
For the final rendering code, we used mostly code provided
by Dr. Barbara Cutler. This consisted of a cross platform
OpenGL based application to view meshes. With some
modifications to allow the reading of the bakeshop file
format, along with an addition of a new module that packed
the triangles, we could view our resulting rendered meshes.

Implementing the bakeshop file loading consisted of using
the existing library created for chef and including along
with some externs to allow cross language linking.
Implementing the new module for our custom mesh
packing took a little more work.

Breaking the mesh of quads into triangles for OpenGL was
fairly simple given we were using quads as our
representation. Getting the colors for each triangle used a
custom KD-Tree[1] that mapped every precomputed angle
on a vertex to its color for a very fast look up. Additionally,
in

Figure 2: Heap Tree Representation1

order to speed up lookups and reduce representation size,
the KD-Tree was flattened into array in a heap-like
structure in which a node at array children were at index

and , see figure 1. Both of these things2𝑛 + 1 2𝑛 + 2
allowed very efficient sampling of expected colors from
any angle, and allowed the real time viewing of data-dense
meshes that resulted from the baking process.

1 By Kelott - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=99968794

A. Robinson, et al.

3.4 Choice of Sample Points

Figure 3: Fibonacci Point Distribution of 1000 Points [2]

So far, we have talked about catching the color of vertices
from different angles, but we haven’t yet talked about how
those angles were chosen. We wanted to choose angles on
the points that would be easy to generate, consistently
spaced around the sphere as to avoid any obvious visual
artifacts, and to allow easy sampling. To these ends we
settled on the Fibonacci point distribution[2].

As you can see in figure 3, the points are qualitatively very
evenly distributed. Though additionally, we found that
quantitatively, by using equation (1) to make our sample
radius always gave us about 8 points, plus or minus 2. In
this equation, is the sample radius and is the number𝑟

𝑠
𝑁

of Fibonacci points on the sphere.

𝑟
𝑆

= 32/𝑁 (1)

One can rederive this formula by taking the surface area of
a sphere of radius 1 and the area of a circle with radius r
and solving for r where the area of the circle is 8/N that of
the sphere's surface area.

4 Results
After much fiddling with CUDA and MPI configurations,
the program works as expected. The Chef can take Bake
Shop files and produce a rendered final version with the
correct material properties. These files are then able to be
passed to the visualizer to be viewed in real time.

The resulting renders can be seen in figure 4, note that they
can be moved around and viewed in real time. The
rendering times will be discussed in depth, but briefly, the
Cornell Box-inspired mesh shown in a-f took about 20

minutes to render using 4 cores on a standard desktop
computer while the bunny took about 10 minutes. Both
ray-trace maps used 1000 samples per vertex.

4.f shows the initial (incorrect) result that we had seen; the
ray tracing code was not interpolating the color for
triangles correctly leading to this bumpy result. After
eventually finding that we were using the same color
multiple times were we shouldn’t be, we were able to get
the much better results in the rest of the table.

4.b shows a visual artifact as a result of our approach: the
fact that the colors are stored with the vertices means that
colors are calculated on a per-vertex basis, so when a vertex
lies on a corner, rays are bounced off of it as if it were a
rounded edge as the vertex calculates its normal as the
average of the surrounding faces.

Figure 4.d shows the per-vertex coloring from the
perspective of figure 4.c. This is just to show once again
how the actual mesh is being colored using cached colors
and the camera’s position and no ray tracing is done at the
visualization stage.

Figure 4.e and 4.f show another artifact of our approach
that is much more difficult to overcome robustly: due to the
fact that the color data are stored with the vertices and that
the faces interpolate between those vertex colors, the
vertices are sometimes easy to see. The grid that’s shown in
the figure is to help the viewer locate the vertices, which
are more brightly green than the surrounding gray mesh.

Finally, figures 4.g and 4.h show a very reflective gray
bunny in a room with a red light at the top and a blue light
at the bottom. This shows that while big lighting shifts
don’t get very muddied, the polygons start to become more
visible with a more complicated mesh. Due to the nature of
any one edge having the same colors on its vertices for both
faces it is attached to, we did not expect any edges to be
visible, because the linear interpolation of the color should
be identical on both sides of the edge. As such, this points
to a bug in our rendering code or something similar.
Investigation on our part is required.

4.1 Performance Scaling

Ranks # Viewpoints Time

1 20 0.412030

2 40 0.444345

4 80 1.377331

8 160 2.618694

Table 1: Baking times for the “cube” example mesh with 8
vertices and 1 ray-trace iteration on the AiMOS

supercomputer.

Ranks # Viewpoints Time

1 20 258.522557

2 40 261.497459

4 80 265.060030

Table 2: Baking times for the “cornell_big_raw” example
mesh with 1924 vertices and 4 ray-trace iterations on the

AiMOS supercomputer.

Ranks Time

1 1293.262907

2 652.941984

4 330.310601

Table 3: Baking times for the “cornell_big_raw” example
mesh with 1924 vertices, 100 viewpoints, and 4 ray-trace

iterations on the AiMOS supercomputer.

4.2 Analysis of Performance
Our implementation exhibits nearly linear strong scaling,
with the rendering time cut roughly in half for each further
vertex-batch subdivision. Weak scaling is less effective,
with additional I/O overhead from synchronizing between
ranks and from writing the viewpoint data to disk in
parallel eventually overwhelming the raw compute
performance gains, especially at low vertex counts. Note
that the current implementation requires that the number of
vertices be a multiple of the number of parallel MPI ranks.
However, the number vertices in a particular rank’s
assigned vertex batch need not be a multiple of the number
of parallel GPU threads for that MPI rank. In general,
dispatching rays to the GPU worsens performance
significantly, often taking twice as long as the same
computation just on the CPU. We suspect that this is
because the KD-tree search is heavily recursive, which can
quickly overwhelm the GPU’s call stack. Indeed, we must

quadruple the default configuration of CUDA’s call-stack
limit to accommodate the recursive invocations.

4.3 Limitations
Our precomputed rendering technique comes with several
limitations. The most significant is that it only works for
static scenes. Because the technique shades at the polygon
level, very high polygon density is necessary to achieve
acceptable visual fidelity. Polygonal artifacts—i.e.,
discontinuous shading at the boundaries of polygons—are
sometimes visible, especially at low polygon or viewpoint
density. The discrete nature of the ray-trace map can result
in small but unexpected color artifacts when the camera
directly “locks onto” a particular predefined viewpoint at
runtime. Memory usage during the baking process is high,
and the intermediate Bake Shop files can grow to be quite
large, often on the order of a few megabytes for a simple
scene with a few discrete meshes. This also means that
initially loading an intermediate Bake Shop file into the
runtime visualizer can cause noticeable lag, though camera
manipulation remains smooth with imperceptible latency
once that loading process completes. Additionally, the Chef
does not currently support more advanced features like
texture sampling or distributed ray tracing[7], though we
are not aware of any fundamental hurdles to implementing
those features in the future.

5 Future Work
Future work could include expanding the capabilities of the
Chef, including the addition of support for distributed ray
tracing[7] and texture sampling. Distributed ray tracing
could help reduce polygonal artifacts by averaging the
shading contributions from locally distributed rays. This
would also play into the vague reflections that our results
seem to show this technique favors. Texture sampling could
permit sub-polygon shading variance beyond just viewpoint
interpolation, but the finer level of detail that that would
afford might make polygonal artifacts more pronounced.

STATEMENT OF WORK
Ally Robinson implemented the real-time visualizer, parts
of the core ray tracer, and the CUDA parallelization.
Gabriel Jacoby-Cooper implemented the Bake Shop data
structures and I/O library, parts of the core ray tracer, and
the MPI parallelization.

ACKNOWLEDGMENTS

A. Robinson, et al.

We would like to acknowledge Drs. Barb Cutler and
Christopher Carothers at Rensselaer Polytechnic Institute in
Troy, NY.

REFERENCES
[1] Jon Louis Bentley. 1975. Multidimensional binary search

trees used for associative searching. Communications
of the ACM 18, 9 (September 1975), 509–517.
https://doi.org/10.1145/361002.361007

[2] Álvaro González. 2009. Measurement of Areas on a
Sphere Using Fibonacci and Latitude–Longitude
Lattices. Math Geosci 42, 1 (November 2009), 49–64.
https://doi.org/10.1007/s11004-009-9257-x

[3] Turner Whitted. 1980. An improved illumination model
for shaded display. Commun. ACM 23, 6 (June 1980),
343–349. https://doi.org/10.1145/358876.358882

[4] Thomas Alois Pichler, Andrej Ferko, Michal Ferko, Peter
Kán, and Hannes Kaufmann. 2022. Precomputed fast

rejection ray-triangle intersection. Graphics and Visual
Computing 6, (June 2022), 200047.
https://doi.org/10.1016/j.gvc.2022.200047

[5] Shenchang Eric Chen and Lance Williams. 1993. View
interpolation for image synthesis. Proceedings of the
20th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’93 (1993).
https://doi.org/10.1145/166117.166153

[6] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat
Hanrahan. 2002. Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics 21, 3 (July
2002), 703–712.
https://doi.org/10.1145/566654.566640

[7] Robert L. Cook, Thomas Porter, and Loren Carpenter.
1984. Distributed ray tracing. ACM SIGGRAPH
Computer Graphics 18, 3 (January 1984), 137–145.
https://doi.org/10.1145/964965.808590

https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/s11004-009-9257-x
https://doi.org/10.1145/358876.358882
https://doi.org/10.1016/j.gvc.2022.200047
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/566654.566640
https://doi.org/10.1145/964965.808590

(a) (b)

(g)

(c) (d)
(h)

(e)
(f)

(i)

Figure 4: Renderings of Baked Results

